Skip to main content
Log in

Key role of peptidoglycan on acrylamide binding by lactic acid bacteria

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The primary purpose of this study was to analyze the ability of four peptidoglycan (PGN) from different lactic acid bacteria to bind acrylamide (AA) and to identify the binding mechanism. In this study, to clarify the possible binding interactions among AA and components of PGN, chemical components, surface structure, amino acids component, and functional groups of peptidoglycans were studied. It was found that PGN from Lactobacillus plantarum 1.0065 had the highest ability to bind AA with 87%. Furthermore, a significant positive relation was found between the carbohydrate content of PGN and percentage of bind AA, and the content of four specific amino acids of PGN and AA binding ability were also positive correlated. Thereinto, alanine of PGN had a significant impact on AA binding among four amino acids. Additionally, the C–O (carboxyl, polysaccharides, and arene), C=O amide, and N–H amines groups of PGN were involved in AA binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baardseth P, Blom H, Skrede G, Mydland LT, Skrede A, Slinde E. Lactic acid fermentation reduces acrylamide formation and other maillard reactions in french fries. Food Chem. Toxicol. 71: 28–33 (2006)

    Google Scholar 

  2. Hariri E, Abboud MI, Demirdjian S, Korfali S, Mroueh M, Taleb RI. Carcinogenic and neurotoxic risks of acrylamide and heavy metals from potato and corn chips consumed by the lebanese population. J. Food Compos. Anal. 42: 91–97 (2015)

    Article  CAS  Google Scholar 

  3. Oracz J, Nebesny E, yelewicz D. New treds in quantification of acrylamide in food products. Talanta 86: 23–24 (2011)

    Article  CAS  Google Scholar 

  4. Anese M, Bortolomeazzi R, Manzocco L, Manzano M, Giusto C, Nicoli MC. Effect of chemical and biological dipping on acrylamide formation and sensory properties in deep-fried potatoes. Food Res. Int. 42: 142–147 (2009)

    Article  CAS  Google Scholar 

  5. Hernandez-Mendoza A, Garcia HS, Steele JL. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem. Toxicol. 47: 1064–1068 (2009)

    Article  CAS  Google Scholar 

  6. Corthier G. The health benefits of probiotics. Danone Nutritopics 29: 1–18 (2004)

    Google Scholar 

  7. Hernandez-Mendoza A, Guzman-de-pena D, Garcia HS. Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. J. Appl. Microbiol. 107: 395–403 (2009)

    Article  CAS  Google Scholar 

  8. El-Nezami H, Mikkänen H, Kankäänpää P, Salminen S, Ahokas J. Ability of Lactobacillus and Propionibacterium strains to remove Aflatoxin B1 from the chicken duodenum. J. Food Protect. 63: 549–552 (2000)

    Article  CAS  Google Scholar 

  9. Fazeli MR, Hajimohammadali M, Mokshkani A, Samadi N, Jamalifar H, Khoshayand MR. Aflatoxin B1 binding capacity of autochthonous strains of Lactic acid bacteria. J. Food Protect. 72: 189–192 (2009)

    Article  CAS  Google Scholar 

  10. Wang L, Yue TL, Yuan YH, Wang ZL, Ye MQ, Cai R. A new insight into the adsorption mechanism of patulin by the heat-inactive Lactic acid bacteria cells. Food Control 50: 104–110 (2015)

    Article  CAS  Google Scholar 

  11. Hamidi A, Mirnejad R, Yahaghi E, Behnod V, Mirhosseini A, Amani S, Sattari S, Darian EK. The aflatoxin B1 isolating potential of two Lactic acid bacteria. Asian Pac. J. Trop. Biomed. 3: 732–736 (2013)

    Article  CAS  Google Scholar 

  12. Hernandez-Mendoza A, González-Córdova AF, Vallejo-Córdoba B, García HS. Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of aflaoxin B1 in rats. J. Basic Microb. 51: 1–6 (2011)

    Article  Google Scholar 

  13. Serrano-Niño JC, Cavazos-Garduño A, Cantú-Cornelio F, González-Córdova AF, Vallejo-Córdoba B, Hernández-Mendoza A, García HS. In vitro r edu ced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT-Food Sci. Technol. 64: 1334–1341 (2015)

    Article  Google Scholar 

  14. Hwang KT, Lee W, Kim GY, Lee J, Jun W. The binding of aflatoxin B1 modulates the adhesion properties of Lactobacillus casei KCTC 3260 to HT29 colon cancer cell line. Food Sci. Biotechnol. 14: 866–870 (2005)

    CAS  Google Scholar 

  15. Tripathi P, Beaussart A, Andre G, Rolain T, Lebeer S, Vanderleyden J. Towards a nanoscale view of Lactic acid bacteria. Micron 43: 1323–1330 (2012)

    Article  CAS  Google Scholar 

  16. Wu Z, Pan DD, Guo YX, Zeng XQ. Structure and anti-inflammatory capacity of peptidoglycan from Lactobacillus acidophilus in RAW-264.7 cells. Carbohyd. Polym. 96: 466–473 (2013)

    Article  CAS  Google Scholar 

  17. Baik JE, Jang YO, Kang SS, Cho K, Yun CH, Han SH. Differential profiles of gastrointestinal proteins interacting with peptidoglycans from Lactobacillus plantarum and Staphylococcus aureus. Mol. Immunol. 65: 77–85 (2015)

    Article  CAS  Google Scholar 

  18. Chen KK, Liu C, He Y, Jiang HB, Lu ZQ. A short-type peptidoglycan recognition protein from the silkworm: Expression, characterization and involvement in the prophenoloxidase activation pathway. Dev. Comp. Immunol. 45: 1–9 (2014)

    Article  Google Scholar 

  19. Wu Z, Pan DD, Guo YX, Sun YY, Zeng XQ. Peptidoglycan diversity and antiinflammatory capacity in Lactobacillus strains. Carbohyd. Polym. 128: 130–137 (2015)

    Article  CAS  Google Scholar 

  20. Vinderola CG, Bailo N, Reinheimer JA. Survival of probiotic microflora in Argentinian yogurts during refrigerated storage. Food Res. Int. 33: 97–102 (2000)

    Article  CAS  Google Scholar 

  21. Vemula H, Ayon NJ, Gutheil WG. Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus. Biochimie 121: 72–78 (2016)

    Article  CAS  Google Scholar 

  22. Mei MAQ, Elbashir AA, Schmitz OJ. Determination of acrylamide in sudanese food by high performance liquid chromatography coupled with LTQ Qrbitrap mass spectrometry. Food Chem. 176: 342–349 (2015)

    Article  Google Scholar 

  23. Marcotte L, Kegelaer G, Sandt C, Barbeau J, Lafleur M. An alternative infrared spectroscopy assay for the quantification of polysaccharides in bacterial samples. Anal. Biochem. 361: 7–14 (2007)

    Article  CAS  Google Scholar 

  24. Hall MB. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Anim. Feed Sci. Tech. 185: 94–100 (2013)

    Article  CAS  Google Scholar 

  25. Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contam. 21: 158–164 (2004)

    Article  CAS  Google Scholar 

  26. Zoghi A, Khosravi-Darani K, Sohrabvandi S. Surface binding of toxins and heavy metals by probiotics. Mini-Rev. Med. Chem. 14: 84–98 (2014)

    Article  CAS  Google Scholar 

  27. Fuchs S, Sontag G, Stidl R, Ehrlich V, Kundi M, Knasmuller S. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by Lactic acid bacteria. Food Chem. Toxicol. 46: 1398–1407 (2008)

    Article  CAS  Google Scholar 

  28. Turbic A, Ahokas JT, Haskard CA. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J. Dairy Sci. 91: 2960–2966 (2002)

    Google Scholar 

  29. Zhao H F, Zhou F, Qi YQ, Piotr D, Bai FL, Piotr W, Zhang BL. Screening of Lactobacillus strains for their ability to bind Benzo(a)pyrene and the mechanism of the process. Food Chem. Toxicol. 59: 67–71 (2013)

    Article  CAS  Google Scholar 

  30. Haskard C, Binnion C, Ahokas J. Factors affecting the sequestration of aflaoxin by Lactobacillus rhamnosus strain GG. Chem.-Biol. Interact. 128: 39–49 (2000)

    Article  CAS  Google Scholar 

  31. Hatab S, Yue T, Mohamad O. Removal of patulin from apple juice using inactivated Lactic acid bacteria. J. Appl. Microbiol. 112: 892–899 (2012)

    Article  CAS  Google Scholar 

  32. Guo C, Yuan Y, Yue T, Hatab S, Wang Z. Binding mechanism of patulin to heattreated yeast cell. Lett. Appl. Microbiol. 55: 453–459 (2012)

    Article  CAS  Google Scholar 

  33. Deng Y, Dixon JB, White N, Loeppert RH, Juo ASR. Bonding between polyacrylamide and smectite. Colloid. Surface A 281: 82–91 (2006)

    Article  CAS  Google Scholar 

  34. Koutsidis G, Simons SPJ, Thong YH, Haldoupis Y, Mojica-Lazaro J, Wedzicha BL, Mottram DS. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. J. Agr. Food Chem. 57: 9011–9015 (2009)

    Article  CAS  Google Scholar 

  35. Niderkorn V, Morgavi D, Aboab B, Lemaire M, Boudra H. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by Lactic acid bacteria. J. Appl. Microbiol. 106: 977–985 (2009)

    Article  CAS  Google Scholar 

  36. Zamora R, Delgado RM, Hidalgo FJ. Model reactions of acrylamide with selected amino compounds. J. Agr. Food Chem. 58: 1708–1713 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Li Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, W., Li, L. et al. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria. Food Sci Biotechnol 26, 271–277 (2017). https://doi.org/10.1007/s10068-017-0036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0036-z

Keywords

Navigation