Advertisement

Food Science and Biotechnology

, Volume 26, Issue 1, pp 263–269 | Cite as

Inhibitory effect of esculetin on free-fatty-acid-induced lipid accumulation in human HepG2 cells through activation of AMP-activated protein kinase

  • Yeaji Park
  • Jeehye Sung
  • Jinwoo Yang
  • Hyeonmi Ham
  • Younghwa Kim
  • Heon-Sang Jeong
  • Junsoo Lee
Article

Abstract

This study aimed to determine the lipid-lowering effect of esculetin (6,7-dihydroxycoumarin), a coumarin derivative, using a cell model of steatosis induced by a mixture of free fatty acids (FFAs). Esculetin dose-dependently inhibited intracellular lipid accumulation by down-regulating the protein expression of lipogenic genes such as sterol regulatory element-binding protein-1c (SREBP1c) and fatty acid synthase (FAS) in FFAs-induced HepG2 cells. Moreover, esculetin significantly elevated the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in HepG2 hepatocytes. The anti-lipogenic effects of esculetin mediated by AMPK activation were abolished when FFAs-induced HepG2 cells were treated with a specific inhibitor of AMPK, i.e., compound C. These results suggest that esculetin attenuates hepatic lipid accumulation by inhibiting lipogenesis through the modulation of AMPK signaling pathway on FFAs-induced steatosis in HepG2 cells and may be used for the prevention of nonalcoholic fatty liver disease (NAFLD).

Keywords

esculetin lipogenesis AMPK NAFLD HepG2 cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehta K, Van Thiel DH, Shah N, Mobarhan S. Nonalcoholic fatty liver disease: Pathogenesis and the role of antioxidants. Nutr. Rev. 60: 289–293 (2002)CrossRefGoogle Scholar
  2. 2.
    Schreuder TC, Verwer BJ, Van Nieuwkerk CM, Mulder CJ. Nonalcoholic fatty liver disease: An overview of current insights in pathogenesis, diagnosis and treatment. World J. Gastroentero. 14: 2474–2486 (2008)CrossRefGoogle Scholar
  3. 3.
    Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Buttner R, Scholmerich J, Hellerbrand C. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res. 19: 996–1005 (2009)CrossRefGoogle Scholar
  4. 4.
    Seo MS, Hong SW, Yeon SH, Kim YM, Um KA, Kim JH, Kim HJ, Chang KC, Park SW. Magnolia officinalis attenuates free fatty acid-induced lipogenesis via AMPK phosphorylation in hepatocytes. J. Ethnopharmacol. 157: 140–148 (2014)CrossRefGoogle Scholar
  5. 5.
    Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase: Role in metabolism and therapeutic implications. Diabetes Obes. Metab. 8: 591–602 (2006)CrossRefGoogle Scholar
  6. 6.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174 (2001)CrossRefGoogle Scholar
  7. 7.
    Hardie DG. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Bio. 8: 774–785 (2007)CrossRefGoogle Scholar
  8. 8.
    Viollet B, Guigas B, Leclerc J, Hebrard S, Lantier L, Mounier R, Andreelli F, Foretz M. AMP-activated protein kinase in the regulation of hepatic energy metabolism: From physiology to therapeutic perspectives. Acta Physiol. 196: 81–98 (2009)CrossRefGoogle Scholar
  9. 9.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13: 376–388 (2011)CrossRefGoogle Scholar
  10. 10.
    Shimano H, Yahagi N, Amemiya-Kudo M, Hasty AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K, Gotoda T, Ishibashi S, Yamada N. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274: 35832–35839 (1999)CrossRefGoogle Scholar
  11. 11.
    Harvatine KJ, Bauman DE. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136: 2468–2474 (2006)Google Scholar
  12. 12.
    Yue J, Xu J. Chemical components from Ceratostigma willmottianum. J. Nat. Prod. 60: 1031–1033 (1997)CrossRefGoogle Scholar
  13. 13.
    Chang WS, Lin CC, Chiang HC. Superoxide anion scavenging effect of coumarins. Am. J. Chinese Med. 24: 11–17 (1996)CrossRefGoogle Scholar
  14. 14.
    Kim Y, Park Y, Namkoong S, Lee J. Esculetin inhibits the inflammatory response by inducing heme oxygenase-1 in cocultured macrophages and adipocytes. Food Funct. 5: 2371–2377 (2014)CrossRefGoogle Scholar
  15. 15.
    Witaicenis A, Seito LN, Di Stasi LC. Intestinal anti-inflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem-Biol. Interact. 186: 211–218 (2010)CrossRefGoogle Scholar
  16. 16.
    Subramaniam SR, Ellis EM. Esculetin-induced protection of human hepatoma HepG2 cells against hydrogen peroxide is associated with the Nrf2-dependent induction of the NAD(P)H: Quinone oxidoreductase 1 gene. Toxicol. Appl. Pharm. 250: 130–136 (2011)CrossRefGoogle Scholar
  17. 17.
    Kim Y, Lee J. Esculetin, a coumarin derivative, suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. J. Funct. Foods 12: 509–515 (2015)CrossRefGoogle Scholar
  18. 18.
    Kato A, Minoshima Y, Yamamoto J, Adachi I, Watson AA, Nash RJ. Protective effects of dietary chamomile tea on diabetic complications. J. Agr. Food Chem 56: 8206–8211 (2008)CrossRefGoogle Scholar
  19. 19.
    Ahn J, Lee H, Kim S, Park J, Ha T. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem. Bioph. Res. Co. 373: 545–549 (2008)CrossRefGoogle Scholar
  20. 20.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)CrossRefGoogle Scholar
  21. 21.
    Ibrahim SH, Kohli R, Gores GJ. Mechanisms of lipotoxicity in NAFLD and clinical implications. J. Pediatr. Gastr. Nutr. 53: 131–140 (2011)CrossRefGoogle Scholar
  22. 22.
    Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 13: 9–19 (2009)Google Scholar
  23. 23.
    Hur W, Kim SW, Lee YK, Choi JE, Hong SW, Song MJ, Bae SH, Park T, Um SJ, Yoon SK. Oleuropein reduces free fatty acid-induced lipogenesis via lowered extracellular signal-regulated kinase activation in hepatocytes. Nutr. Res. 32: 778–786 (2012)CrossRefGoogle Scholar
  24. 24.
    Liang H, Zhang L, Wang H, Tang J, Yang J, Wu C, Chen S. Inhibitory effect of Gardenoside on free fatty acid-induced steatosis in HepG2 hepatocytes. Int. J. Mol. Sci. 16: 27749–27756 (2015)CrossRefGoogle Scholar
  25. 25.
    Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, Poniachik J. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106: 635–643 (2004)CrossRefGoogle Scholar
  26. 26.
    Gomez-Lechon MJ, Donato MT, Martinez-Romero A, Jimenez N, Castell JV, O'Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem-Biol. Interact. 165: 106–116 (2007)CrossRefGoogle Scholar
  27. 27.
    Schultz JR, Tu H, Luk A, Repa J J, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. Role of LXRs in control of lipogenesis. Gene. Dev. 14: 2831–2838 (2000)CrossRefGoogle Scholar
  28. 28.
    Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 48: 1–26 (2009)CrossRefGoogle Scholar
  29. 29.
    Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, Jung KH, Kwon KI, Jeong TC, Chung YC, Jeong HG. Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr. Res. 31: 896–906 (2011)CrossRefGoogle Scholar
  30. 30.
    Hwang YP, Kim HG, Choi JH, Do MT, Chung YC, Jeong TC, Jeong HG. S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. J. Nutr. Biochem. 24: 1469–1478 (2013)CrossRefGoogle Scholar
  31. 31.
    Hsu WH, Chen TH, Lee BH, Hsu YW, Pan TM. Monascin and ankaflavin act as natural AMPK activators with PPARalpha agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 64: 94–103 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yeaji Park
    • 1
  • Jeehye Sung
    • 1
  • Jinwoo Yang
    • 1
  • Hyeonmi Ham
    • 2
  • Younghwa Kim
    • 3
  • Heon-Sang Jeong
    • 1
  • Junsoo Lee
    • 1
  1. 1.Division of Food and Animal SciencesChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Department of Central Area, National Institute of Crop ScienceRural Development AdministrationSuwon, GyeonggiKorea
  3. 3.School of Food Biotechnology and NutritionKyungsung UniversityBusanKorea

Personalised recommendations