Food Science and Biotechnology

, Volume 26, Issue 1, pp 229–235 | Cite as

Cholesterol-lowering effect of astringent persimmon fruits (Diospyros kaki Thunb.) extracts

  • Kyung-A Hwang
  • Yu-Jin Hwang
  • In Guk Hwang
  • Jin Song
  • Soo Muk Cho
Article
  • 72 Downloads

Abstract

This study aimed to investigate the effects of ethanol extract of astringent persimmon on antioxidant activity, cholesterol, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and mRNA expression of cholesterol metabolism-related genes in human hepatoma cell line (HepG2 cells). In the results, DPPH and ABTS radical scavenging activity showed that the different types cultivars of astringent persimmon was similar to Vitamin C as positive control. However, there are not significant differences among samples. In addition, our results showed that cholesterol amounts and HMG-CoA reductase activity were inhibited by astringent persimmon in HepG2 cells. Further, treatment with astringent persimmon upregulated the expression of LDL receptor and SREBP-2, and also increased the level of HDL-associated ABCA1. Taken together, our results indicate that astringent persimmon regulate cholesterol accumulation by inhibiting the oxidative stress and controlling the levels of LDL & HDLassociated gene.

Keywords

astringent persimmon anti-oxidants activity 3-hydroxy-3-methylglutaryl-CoA reductase low-density lipoprotein high-density lipoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badimon L, Vilahur G, Padro T. Lipoproteins, platelets and atherothrombosis. Rev. Esp. Cardiol. 62: 1161–1178 (2009)CrossRefGoogle Scholar
  2. 2.
    Badimon L, Storey RF, Vilahur G. Update on lipids, inflammation and atherothrombosis. Thromb. Haemostasis 105: S34–S42 (2011)CrossRefGoogle Scholar
  3. 3.
    Sekalska B. Aortic expression of monocyte chemotactic protein-1(MCP-1) gene in rabbits with experimental atherosclerosis. Ann. Acad. Med. Stetin. 49: 79–90 (2003)Google Scholar
  4. 4.
    Vogiatzi G, Tousoulis D, Stefanadis C. The role of oxidative stress in atherosclerosis. Hell. J. Cardiol. 50: 402–409 (2009)Google Scholar
  5. 5.
    Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119: 598–620 (1992)Google Scholar
  6. 6.
    Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, Stocker R, Croft KD. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscl. Throm. Vas. 30: 749–757 (2010)CrossRefGoogle Scholar
  7. 7.
    Wedworth SM, Lynch S. Dietary flavonoids in atherosclerosis prevention. Ann. Pharmacother. 29: 627–628 (1995)CrossRefGoogle Scholar
  8. 8.
    Kang WW, Kim JK, Oh SL, Kim JH, Han JH, Yang JM, Choi JU. Physicochemical characteristics of Sang ju traditional dried persimmons during drying process. J. Korean Soc. Food Sci. Nutr. 33: 386–391 (2004)CrossRefGoogle Scholar
  9. 9.
    Lee MH, No HK. Quality changes during storage of persimmon vinegar clarified by chitosan treatment. J. Korean Soc. Food Sci. Nutr. 30: 283–287 (2001)Google Scholar
  10. 10.
    Ohguchi K, Nakajima C, Oyama M, Iinuma M, Itoh T, Akao Y, Nozawa Y, Ito M. Inhibitory effects of flavonoid glycosides isolated from the peel of Japanese persimmon (Diospyros kaki 'Fuyu') on melanin biosynthesis. Biol. Pharm. Bull. 33: 122–124 (2010)CrossRefGoogle Scholar
  11. 11.
    Briand CH. The common persimmon (Diospyros virginiana L.): The history of an underutilized fruit tree (16th-19th centuries). Huntia 12: 71–89 (2005)Google Scholar
  12. 12.
    Kawase M, Motohashi N, Satoh K, Sakagami H, Nakashima H, Tani S, Shirataki Y, Kurihara T, Spengler G, Wolfard K, Molnár J. Biological activity of persimmon (Diospyros kaki) peel extracts. Phytother. Res. 17: 495–500 (2003)CrossRefGoogle Scholar
  13. 13.
    Kotani M, Matsumoto M, Fujita A, Higa S, Wang W, Suemura M, Kishimoto T, Tanaka T. Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. J. Allergy Clin. Immun. 106: 159–166 (2000)CrossRefGoogle Scholar
  14. 14.
    Im CY, Jeong ST, Choi HS, Choi JH, Yeo SH, Kang WW. Characteristics of Gammakgeolli added with processed forms of persimmon. Korean J. Food Preserv. 19: 159–166 (2012)CrossRefGoogle Scholar
  15. 15.
    Shin DS, Park HY, Kim MH, Han GW. Quality characteristics of bread with persimmon peel powder. Korean J. Food Cook. Sci. 27: 589–597 (2011)CrossRefGoogle Scholar
  16. 16.
    Yoo KH, Kim SJ, Jeong JM. Effects of persimmon (Diospyros kaki Thunb.) syrup extracted from persimmon and persimmon by-products on blood glucose level. J. Korean Soc. Food Sci. Nutr. 40: 682–688 (2011)CrossRefGoogle Scholar
  17. 17.
    Singleton VL, Rossi JA. A colorimetry of totalphenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)Google Scholar
  18. 18.
    Bubba MD, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P. Changes in tannins, ascorbic acid, and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 22: 668–677 (2009)CrossRefGoogle Scholar
  19. 19.
    Mensor LL, Menezes FS, Leitao GG, Reis AS, dos Santos TC, Coube CS, Leitao SG. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 15: 127–130 (2001)CrossRefGoogle Scholar
  20. 20.
    Re R, Pellegrini N, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)CrossRefGoogle Scholar
  21. 21.
    Denev P, Yordanov A. Total polyphenol, proanthocyanidin and flavonoid content, carbohydrate composition and antioxidant activity of persimmon (Diospyros kaki L.) fruit in relation to cultivar and maturity stage. Bulg. J. Agric. Sci. 19: 981–988 (2013)Google Scholar
  22. 22.
    Koh YJ, Cha DS, Choi HD, Park YK, Choi IW. Hot water extraction optimization of dandelion leaves to increase antioxidant activity. Korean J. Food Sci. Technol. 40: 283–289 (2008)Google Scholar
  23. 23.
    Gesquière L, Loreau N, Minnich A, Davignon J, Blache D. Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radical Bio. Med. 27: 134–145 (1999)CrossRefGoogle Scholar
  24. 24.
    Tian Y, Li CM, Yang J, Xu SF, Hagerman AE. High molecular weight persimmon tannin is a potent antioxidant both ex vivo and in vivo. Food Res. Int. 45: 26–30 (2012)CrossRefGoogle Scholar
  25. 25.
    Gato N, Kadowaki A, Hashimoto N, Yokoyama S, Matsumoto K. Persimmon fruit tannin-rich fiber reduces cholesterol levels in humans. Ann. Nutr. Metab. 62: 1–6 (2013)CrossRefGoogle Scholar
  26. 26.
    Schneider WJ, Goldstein JL, Brown MS. Partial purification and characterization of the low density lipoprotein receptor from bovine adrenal cortex. J. Biol. Chem. 255: 11442–11447 (1980)Google Scholar
  27. 27.
    Brown MS, Goldstein JL. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331–340 (1997)CrossRefGoogle Scholar
  28. 28.
    Briggs MR, Yokoyama C, Wang X, Brown MS, Goldstein JJ. Nuclear protein that binds sterol regulatory element of LDL receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J. Biol. Chem. 268: 14490–14496 (1993)Google Scholar
  29. 29.
    Edwards PA, Ericsson J. Sterols and isoprenoids: Signaling molecules derived from the cholesterol biosynthetic pathway. Annu. Rev. Biochem. 68: 157–185 (1999)CrossRefGoogle Scholar
  30. 30.
    Quazi F, Molday RS. Lipid transport by mammalian ABC proteins. Essays Biochem. 50: 265–290 (2011)CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJ, Van Eck M. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrowderived cells in LDL receptor knockout mice on western-type diet. Circ. Res. 107: e20–e31 (2010)CrossRefGoogle Scholar
  32. 32.
    Rigotti A, Trigatti B, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein(HDL) receptor scavenger class B type I reveals its key role in HDL metabolism. P. Natl. Acad. Sci. USA 94: 12610–12615 (1997)CrossRefGoogle Scholar
  33. 33.
    Krause BR, Auerbach BJ. Reverse cholesterol transport and future pharmacological approaches to the treatment of atherosclerosis. Curr. Opin. Investig. D. 2: 375–381 (2001)Google Scholar
  34. 34.
    Matsumoto K, Yokoyama S, Gato N. Hypolipidemic effect of young persimmon fruit in C57BL/6.KOR-ApoEshl mice. Biosci. Biotech. Bioch. 72: 2651–2659 (2008)CrossRefGoogle Scholar
  35. 35.
    Dávalos A, Fernández-Hernando C, Cerrato F, Martínez-Botas J, Gómez-Coronado D, Gómez-Cordovés C, Lasunción MA. Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. J. Nutr. 136: 1766–1773 (2006)Google Scholar
  36. 36.
    Mullen E, Brown RM, Osborne TF, Shay NF. Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J. Nutr. 134: 2942–2947 (2004)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kyung-A Hwang
    • 1
  • Yu-Jin Hwang
    • 1
  • In Guk Hwang
    • 1
  • Jin Song
    • 1
  • Soo Muk Cho
    • 1
  1. 1.Department of Agrofood Resources, National Academy of Agricultural ScienceRDAWanju, JeonbukKorea

Personalised recommendations