Advertisement

Food Science and Biotechnology

, Volume 26, Issue 1, pp 221–228 | Cite as

Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.)

  • Jeong-Seung Hwang
  • Chi Heung Cho
  • Moo-Yeol Baik
  • Seung-Kook Park
  • Ho Jin Heo
  • Youn-Sup Cho
  • Dae-Ok Kim
Article

Abstract

Oxidative stress contributes to neurodegenerative disorders such as Alzheimer’s disease. Phenolic antioxidants can efficiently reduce oxidative stress. In this study, we evaluated the effects of the freeze-drying process on phenolics, antioxidants, and cholinesterase inhibition in five cultivars of kiwifruits grown in Korea, Actinidia chinensis cv. Hort16A, cv. Happygold, and cv. Haegeum; A. deliciosa cv. Hayward; and A. eriantha cv. Bidan, by comparing them with their fresh counterparts. Among the five cultivars of both fresh and freeze-dried kiwifruits tested in this study, cv. Bidan had the highest levels of total phenolics, total flavonoids, and antioxidants, and cv. Hayward had the lowest. Freezedried kiwifruits inhibited acetylcholinesterase and butyrylcholinesterase that catalyze the breakdown of acetylcholine (neurotransmitter). On sensory evaluation, cv. Happygold had the highest overall preference scores among the freeze-dried kiwifruits. The results suggest that freeze-dried kiwifruit could serve as a good source of antioxidants and cholinesterase inhibitors.

Keywords

acetylcholinesterase butyrylcholinesterase golden kiwifruit green kiwifruit white kiwifruit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lim YJ, Oh C-S, Park Y-D, Kim D-O, Kim U-J, Cho Y-S, Eom SH. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943–949 (2014)CrossRefGoogle Scholar
  2. 2.
    Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T. Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J. Agr. Food Chem. 52: 5472–5475 (2004)CrossRefGoogle Scholar
  3. 3.
    Bursal E, Gülçin I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 44: 1482–1489 (2011)CrossRefGoogle Scholar
  4. 4.
    Park Y-S, Leontowicz H, Leontowicz M, Namiesnik J, Suhaj M, Milena Cvikrová, Martincová O, Weisz M, Gorinstein S. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. J. Food Compos. Anal. 24: 963–970 (2011)CrossRefGoogle Scholar
  5. 5.
    Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, Manning MA. First report of Pseudomonas syringae pv.actinidiae causin g kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 6: 67–71 (2011)CrossRefGoogle Scholar
  6. 6.
    Jung K-A, Song T-C, Han D, Kim I-H, Kim Y-E, Lee C-H. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull. 28: 1782–1785 (2005)CrossRefGoogle Scholar
  7. 7.
    Jeong CH, Chun JY, Bae SH, Choi SG. Chemical components and antioxidative activities of Korean kiwi. J. Agric. Life Sci. 41: 27–35 (2007)Google Scholar
  8. 8.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 160: 1–40 (2006)CrossRefGoogle Scholar
  9. 9.
    Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Alzheimer's amyloid ß-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130: 184–208 (2000)CrossRefGoogle Scholar
  10. 10.
    Kim D-O, Lee CY. Comprehensive study of vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. 44: 253–273 (2004)CrossRefGoogle Scholar
  11. 11.
    Park Y-S, Namiesnik J, Vearasilp K, Leontowicz H, Leontowicz M, Barasch D, Nemirovski A, Trakhtenberg S, Gorinstein S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 165: 354–361 (2014)CrossRefGoogle Scholar
  12. 12.
    Zuo L-L, Wang Z-Y, Fan Z-L, Tian S-Q, Liu J-R. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. 13: 5506–5518 (2012)CrossRefGoogle Scholar
  13. 13.
    Lee I, Im S, Jin C-R, Heo HJ, Cho Y-S, Baik M-Y, Kim D-O. Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea. Hort. Environ. Biotechnol. 56: 841–848 (2015)CrossRefGoogle Scholar
  14. 14.
    Lee I, Lee BH, Eom SH, Oh C-S, Kang H, Cho Y-S, Kim D-O. Antioxidant capacity and protective effects on neuronal PC-12 cells of domestic bred kiwifruit. Korean J. Hort. Sci. Technol. 33: 259–267 (2015)CrossRefGoogle Scholar
  15. 15.
    Szwajgier D, Borowiec K. P hen olic a cids f rom malt a re efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. I. Brewing 118: 40–48 (2012)CrossRefGoogle Scholar
  16. 16.
    Kataliniæ M, Bosak A, Kovarik Z. Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol. Biotech. 52: 64–67 (2014)Google Scholar
  17. 17.
    Ciurzyñska A, Lenart A. Freeze-drying–Application in food processing and biotechnology–A review. Pol. J. Food Nutr. Sci. 61: 165–171 (2011)Google Scholar
  18. 18.
    Kang B-S, Whang H-J. Quality characteristics of Cheonan Shingo pear and freeze-dried pear snack. J. Korean Soc. Food Sci. Nutr. 25: 324–329 (2012)CrossRefGoogle Scholar
  19. 19.
    Semenov GV, Krasnova IS, Suvorov OA, Shuvalova ID, Posokhov ND. Influence of freezing and drying on phytochemical properties of various fruit. Biosci. Biotech. Res. Asia 12: 1311–1320 (2015)CrossRefGoogle Scholar
  20. 20.
    AOAC. Official Methods of Analysis. 18th ed. Method 934.06. Association of Official Analytical Chemists, Washington, D.C., USA (2005)Google Scholar
  21. 21.
    Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)Google Scholar
  22. 22.
    Kim D-O, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321–326 (2003)CrossRefGoogle Scholar
  23. 23.
    Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25–30 (1995)CrossRefGoogle Scholar
  24. 24.
    Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50: 4437–4444 (2002)CrossRefGoogle Scholar
  25. 25.
    Du G, Li M, Ma F, Liang D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113: 557–562 (2009)CrossRefGoogle Scholar
  26. 26.
    Park YS, Kim BW, Kim T-C, Jang HG, Chon SU, Cho JY, Jiang SH, Heo BG. Physiological activity of methanol extracts from Korean kiwifruits. Korean J. Hort. Sci. Technol. 26: 495–500 (2008)Google Scholar
  27. 27.
    Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013: 162750 (2013)Google Scholar
  28. 28.
    Yoo KM, Kim D-O, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177–182 (2007)Google Scholar
  29. 29.
    Aazza S, Lyoussi B, Miguel MG. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16: 7672–7690 (2011)CrossRefGoogle Scholar
  30. 30.
    Chen X, Fang L, Liu J, Zhan C-G. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine. J. Phys. Chem. B 115: 1315–1322 (2011)CrossRefGoogle Scholar
  31. 31.
    Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Therapeut. 148: 34–46 (2015)CrossRefGoogle Scholar
  32. 32.
    Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Scognamiglio M, Monaco P. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agr. Food Chem. 57: 4148–4155 (2009)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jeong-Seung Hwang
    • 1
    • 2
  • Chi Heung Cho
    • 1
    • 2
  • Moo-Yeol Baik
    • 1
  • Seung-Kook Park
    • 1
  • Ho Jin Heo
    • 3
  • Youn-Sup Cho
    • 4
  • Dae-Ok Kim
    • 1
    • 2
  1. 1.Department of Food Science and BiotechnologyKyung Hee UniversityYongin, GyeonggiKorea
  2. 2.Skin Biotechnology CenterKyung Hee UniversitySuwon, GyeonggiKorea
  3. 3.Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life ScienceGyeongsang National UniversityJinju, GyeongnamKorea
  4. 4.Fruit Research InstituteJeollanam-do Agricultural Research and Extension ServicesWando, JeonnamKorea

Personalised recommendations