Skip to main content
Log in

Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.)

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress contributes to neurodegenerative disorders such as Alzheimer’s disease. Phenolic antioxidants can efficiently reduce oxidative stress. In this study, we evaluated the effects of the freeze-drying process on phenolics, antioxidants, and cholinesterase inhibition in five cultivars of kiwifruits grown in Korea, Actinidia chinensis cv. Hort16A, cv. Happygold, and cv. Haegeum; A. deliciosa cv. Hayward; and A. eriantha cv. Bidan, by comparing them with their fresh counterparts. Among the five cultivars of both fresh and freeze-dried kiwifruits tested in this study, cv. Bidan had the highest levels of total phenolics, total flavonoids, and antioxidants, and cv. Hayward had the lowest. Freezedried kiwifruits inhibited acetylcholinesterase and butyrylcholinesterase that catalyze the breakdown of acetylcholine (neurotransmitter). On sensory evaluation, cv. Happygold had the highest overall preference scores among the freeze-dried kiwifruits. The results suggest that freeze-dried kiwifruit could serve as a good source of antioxidants and cholinesterase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim YJ, Oh C-S, Park Y-D, Kim D-O, Kim U-J, Cho Y-S, Eom SH. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943–949 (2014)

    Article  CAS  Google Scholar 

  2. Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T. Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J. Agr. Food Chem. 52: 5472–5475 (2004)

    Article  CAS  Google Scholar 

  3. Bursal E, Gülçin I. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 44: 1482–1489 (2011)

    Article  CAS  Google Scholar 

  4. Park Y-S, Leontowicz H, Leontowicz M, Namiesnik J, Suhaj M, Milena Cvikrová, Martincová O, Weisz M, Gorinstein S. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars. J. Food Compos. Anal. 24: 963–970 (2011)

    Article  CAS  Google Scholar 

  5. Everett KR, Taylor RK, Romberg MK, Rees-George J, Fullerton RA, Vanneste JL, Manning MA. First report of Pseudomonas syringae pv.actinidiae causin g kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 6: 67–71 (2011)

    Article  Google Scholar 

  6. Jung K-A, Song T-C, Han D, Kim I-H, Kim Y-E, Lee C-H. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull. 28: 1782–1785 (2005)

    Article  CAS  Google Scholar 

  7. Jeong CH, Chun JY, Bae SH, Choi SG. Chemical components and antioxidative activities of Korean kiwi. J. Agric. Life Sci. 41: 27–35 (2007)

    Google Scholar 

  8. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 160: 1–40 (2006)

    Article  CAS  Google Scholar 

  9. Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Alzheimer's amyloid ß-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130: 184–208 (2000)

    Article  CAS  Google Scholar 

  10. Kim D-O, Lee CY. Comprehensive study of vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. 44: 253–273 (2004)

    Article  CAS  Google Scholar 

  11. Park Y-S, Namiesnik J, Vearasilp K, Leontowicz H, Leontowicz M, Barasch D, Nemirovski A, Trakhtenberg S, Gorinstein S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 165: 354–361 (2014)

    Article  CAS  Google Scholar 

  12. Zuo L-L, Wang Z-Y, Fan Z-L, Tian S-Q, Liu J-R. Evaluation of antioxidant and antiproliferative properties of three Actinidia (Actinidia kolomikta, Actinidia arguta, Actinidia chinensis) extracts in vitro. Int. J. Mol. Sci. 13: 5506–5518 (2012)

    Article  CAS  Google Scholar 

  13. Lee I, Im S, Jin C-R, Heo HJ, Cho Y-S, Baik M-Y, Kim D-O. Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea. Hort. Environ. Biotechnol. 56: 841–848 (2015)

    Article  CAS  Google Scholar 

  14. Lee I, Lee BH, Eom SH, Oh C-S, Kang H, Cho Y-S, Kim D-O. Antioxidant capacity and protective effects on neuronal PC-12 cells of domestic bred kiwifruit. Korean J. Hort. Sci. Technol. 33: 259–267 (2015)

    Article  CAS  Google Scholar 

  15. Szwajgier D, Borowiec K. P hen olic a cids f rom malt a re efficient acetylcholinesterase and butyrylcholinesterase inhibitors. J. I. Brewing 118: 40–48 (2012)

    Article  CAS  Google Scholar 

  16. Kataliniæ M, Bosak A, Kovarik Z. Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol. Biotech. 52: 64–67 (2014)

    Google Scholar 

  17. Ciurzyñska A, Lenart A. Freeze-drying–Application in food processing and biotechnology–A review. Pol. J. Food Nutr. Sci. 61: 165–171 (2011)

    Google Scholar 

  18. Kang B-S, Whang H-J. Quality characteristics of Cheonan Shingo pear and freeze-dried pear snack. J. Korean Soc. Food Sci. Nutr. 25: 324–329 (2012)

    Article  Google Scholar 

  19. Semenov GV, Krasnova IS, Suvorov OA, Shuvalova ID, Posokhov ND. Influence of freezing and drying on phytochemical properties of various fruit. Biosci. Biotech. Res. Asia 12: 1311–1320 (2015)

    Article  Google Scholar 

  20. AOAC. Official Methods of Analysis. 18th ed. Method 934.06. Association of Official Analytical Chemists, Washington, D.C., USA (2005)

  21. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  22. Kim D-O, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81: 321–326 (2003)

    Article  CAS  Google Scholar 

  23. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25–30 (1995)

    Article  CAS  Google Scholar 

  24. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50: 4437–4444 (2002)

    Article  CAS  Google Scholar 

  25. Du G, Li M, Ma F, Liang D. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113: 557–562 (2009)

    Article  CAS  Google Scholar 

  26. Park YS, Kim BW, Kim T-C, Jang HG, Chon SU, Cho JY, Jiang SH, Heo BG. Physiological activity of methanol extracts from Korean kiwifruits. Korean J. Hort. Sci. Technol. 26: 495–500 (2008)

    CAS  Google Scholar 

  27. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013: 162750 (2013)

    Google Scholar 

  28. Yoo KM, Kim D-O, Lee CY. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177–182 (2007)

    CAS  Google Scholar 

  29. Aazza S, Lyoussi B, Miguel MG. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16: 7672–7690 (2011)

    Article  CAS  Google Scholar 

  30. Chen X, Fang L, Liu J, Zhan C-G. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine. J. Phys. Chem. B 115: 1315–1322 (2011)

    Article  CAS  Google Scholar 

  31. Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Therapeut. 148: 34–46 (2015)

    Article  CAS  Google Scholar 

  32. Fiorentino A, D’Abrosca B, Pacifico S, Mastellone C, Scognamiglio M, Monaco P. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agr. Food Chem. 57: 4148–4155 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Ok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JS., Cho, C.H., Baik, MY. et al. Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.). Food Sci Biotechnol 26, 221–228 (2017). https://doi.org/10.1007/s10068-017-0030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0030-5

Keywords

Navigation