Food Science and Biotechnology

, Volume 26, Issue 1, pp 213–220 | Cite as

Anti-oxidative and anti-inflammatory activities of devil’s club (Oplopanax horridus) leaves

  • Mi Jang
  • Young-Chul Lee
  • Hee-Do Hong
  • Young Kyoung Rhee
  • Tae-Gyu Lim
  • Kyung-Tack Kim
  • Feng Chen
  • Hyun-Jin Kim
  • Chang-Won Cho
Article
  • 55 Downloads

Abstract

This study aimed to investigate the anti-oxidative properties of the ethanolic extracts of the devil’s club (Oplopanax horridus) leaves, stems, and roots. Furthermore, the anti-inflammatory activity of the leaf extract was analyzed. The leaf extract had higher total phenolic and flavonoid contents and anti-oxidative activity (radical scavenging, reducing power, and inhibition of lipid oxidation) than the root and stem extracts. The leaf extract also had anti-inflammatory effects. It significantly reduced lipopolysaccharide (LPS)-induced nitric oxide (NO; 71.0% at 50 μg/mL), tumor necrosis factor (TNF)-α (87.6% at 100 μg/mL), and interleukin (IL)-6 (36.2% at 100 μg/mL) production in murine RAW 264.7 macrophages. Furthermore, LPS-induced inducible nitric oxide synthase (iNOS) expression was decreased by the leaf extract (IC50=24.4 μg/mL). The ultra performance liquid chromatography-diode array detector (UPLC-DAD) analysis showed that the leaf extract contained gallic acid, protocatechuic acid, chlorogenic acid, and maltol. These findings suggest that the leaf extract could be utilized as a functional food material because of its anti-oxidative and anti-inflammatory activities.

Keywords

Oplopanax horridus anti-oxidative activity anti-inflammatory activity phenolic compounds UPLC-DAD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tiwari S. Plants: A rich source of herbal medicine. J. Nat. Prod. 1: 27–35 (2008)CrossRefGoogle Scholar
  2. 2.
    Chan PC, Peckham JC, Malarkey DE, Kissling GE, Travlos GS, Fu PP. Two-year toxicity and carcinogenicity studies of Panax ginseng in Fischer 344 rats and B6C3F1 mice. Am. J. Chinese Med. 39: 779–788 (2011)CrossRefGoogle Scholar
  3. 3.
    Lantz TC, Antos JA. Clonal expansion in the deciduous understory shrub, devil's club (Oplopanax horridus; Araliaceae). Can. J. Botany 80: 1052–1062 (2002)CrossRefGoogle Scholar
  4. 4.
    Smith GW. Arctic pharmacognosia II. Devils club, Oplopanax horridus. J. Ethnopharmacol. 7: 313–320 (1983)CrossRefGoogle Scholar
  5. 5.
    Inui T, Wang Y, Deng S, Smith DC, Franzblau SG, Pauli GF. Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J. Chromatogr. A 1151: 211–215 (2007)CrossRefGoogle Scholar
  6. 6.
    Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock RE, Towers GH, Doxsee D, Stokes RW. Antimycobacterial polyynes of Devil’s Club (Oplopanax horridus), a North American native medicinal plant. J. Nat. Prod. 60: 1210–1213 (1997)CrossRefGoogle Scholar
  7. 7.
    Sun S, Du GJ, Qi LW, Williams S, Wang CZ, Yuan CS. Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J. Ethnopharmacol. 132: 280–285 (2010)CrossRefGoogle Scholar
  8. 8.
    Tai J, Cheung S, Chan E, Hasman D. Inhibition of human ovarian cancer cell lines by Devil’s club Oplopanax horridus. J. Ethnopharmacol. 127: 478–485 (2010)CrossRefGoogle Scholar
  9. 9.
    Calway T, Du GJ, Wang CZ, Huang WH, Zhao J, Li SP, Yuan CS. Chemical and pharmacological studies of Oplopanax horridus, a North American botanical. J. Nat. Med. 66: 249–256 (2012)CrossRefGoogle Scholar
  10. 10.
    Lantz TC, Swerhun K, Turner NJ. Devil's club (Oplopanax horridus): An ethnobotanical review. HerbalGram 62: 33–48 (2004)Google Scholar
  11. 11.
    Singleton VS, Rossi JA. Colorimetric of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult 16: 144–158 (1965)Google Scholar
  12. 12.
    Woisky RG, Salatino A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 37: 99–105 (1998)CrossRefGoogle Scholar
  13. 13.
    Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200 (1958)CrossRefGoogle Scholar
  14. 14.
    van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511–517 (1999)CrossRefGoogle Scholar
  15. 15.
    Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)CrossRefGoogle Scholar
  16. 16.
    Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 57: 1655–1666 (2009)CrossRefGoogle Scholar
  17. 17.
    Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 112: 885–888 (2008)CrossRefGoogle Scholar
  18. 18.
    Taviano MF, Marino A, Trovato A, Bellinghieri V, Melchini A, Dugo P, Cacciola F, Donato P, Mondello L, Güvenç A, de Pasquale R, Miceli N. Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. “berries” from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. Food Chem. Toxicol. 58: 22–29 (2013)Google Scholar
  19. 19.
    Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 41: 274–285 (2008)CrossRefGoogle Scholar
  20. 20.
    Fukumoto LR, Mazza G. Assessing antioxidant and pro-oxidant activities of phenolic compounds. J. Agr. Food Chem. 48: 3597–3604 (2000)CrossRefGoogle Scholar
  21. 21.
    Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)CrossRefGoogle Scholar
  22. 22.
    Sudha G, Janardhanan A, Moorthy A, Chinnasamy M, Gunasekaran S, Thimmaraju A, Gopalan J. Comparative study on the antioxidant activity of methanolic and aqueous extracts from the fruiting bodies of an edible mushroom Pleurotus djamor. Food Sci. Biotechnol. 25: 371–377 (2016)CrossRefGoogle Scholar
  23. 23.
    Biswas M, Haldar PK, Ghosh AK. Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. J. Nat. Sci. Biol. Med. 1: 29–34 (2010)CrossRefGoogle Scholar
  24. 24.
    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Method. Enzymol. 186: 421–431 (1990)CrossRefGoogle Scholar
  25. 25.
    Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 57: 1768–1774 (2009)CrossRefGoogle Scholar
  26. 26.
    Osawa T. Novel natural antioxidants for utilization in food and biological systems. pp. 241–251. In: Postharvest Biochemistry of Plant Food-Materials in the Tropics. Uritani I, Garcia VV, Mendoza EM (eds). Japan Scientific Societies Press, Tokyo, Japan (1994)Google Scholar
  27. 27.
    Lee CJ, Chen LG, Chang TL, Ke WM, Lo YF, Wang CC. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 124: 833–841 (2011)CrossRefGoogle Scholar
  28. 28.
    de Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: The role of nitric oxide in sepsis. Expert Rev. Respir. Med. 3: 511–521 (2009)CrossRefGoogle Scholar
  29. 29.
    Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immun. 125: S73–S80 (2010)CrossRefGoogle Scholar
  30. 30.
    Chen HH, Lin HT, Foung YF, Lin JHY. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev. Comp. Immunol. 38: 285–294 (2012)CrossRefGoogle Scholar
  31. 31.
    O’Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2: 37–45 (2002)CrossRefGoogle Scholar
  32. 32.
    Strlic M, Radovic T, Kolar J, Pihlar B. Anti-and prooxidative properties of gallic acid in fenton-type systems. J. Agr. Food Chem. 50: 6313–6317 (2002)CrossRefGoogle Scholar
  33. 33.
    Hsu CC, Hsu CL, Tsai SE, Fu TY, Yen GC. Protective effect of Millettia reticulata Benth against CCl4-induced hepatic damage and inflammatory action in rats. J. Med. Food. 12: 821–828 (2009)CrossRefGoogle Scholar
  34. 34.
    dos Santos MD, Almeida MC, Lopes NP, de Souza GE. Evaluation of the antiinflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 29: 2236–2240 (2006)CrossRefGoogle Scholar
  35. 35.
    Hong YL, Pan HZ, Scott MD, Meshnick SR. Activated oxygen generation by a primaquine metabolite: Inhibition by antioxidants derived from Chinese herbal remedies. Free Radical Bio. Med. 12: 213–218 (1992)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mi Jang
    • 1
    • 2
  • Young-Chul Lee
    • 1
  • Hee-Do Hong
    • 1
  • Young Kyoung Rhee
    • 1
  • Tae-Gyu Lim
    • 1
  • Kyung-Tack Kim
    • 1
  • Feng Chen
    • 3
  • Hyun-Jin Kim
    • 4
  • Chang-Won Cho
    • 1
  1. 1.Division of Strategic Food ResearchKorea Food Research InstituteSeongnam, GyeonggiKorea
  2. 2.Department of Oriental Medicinal Material and Processing, College of Life ScienceKyung Hee UniversityYongin, GyeonggiKorea
  3. 3.Department of Food, Nutrition, and Packaging SciencesClemson UniversityClemsonUSA
  4. 4.Division of Applied Life Sciences (BK21 plus)/Department of Food Science & Technology, and Institute of Agriculture and Life ScienceGyeongsang National UniversityJinju, GyeongnamKorea

Personalised recommendations