Skip to main content
Log in

Gelidium amansii ethanol extract suppresses fat accumulation by down-regulating adipogenic transcription factors in ob/ob mice model

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the anti-obesity effects of Gelidium amansii extract (GAE) in the C57BL/6J-ob/ob mice. The ob/ob mice were fed GAE at 0.5% for 4 weeks, after which body weight, epididymal adipose tissue weight, plasma triglycerides, and hepatic lipid accumulation were significantly reduced in GAE-fed mice compared with ob/ob control mice. Plasma adiponectin levels were significantly higher in GAE-fed mice than in ob/ob control mice. These findings were supported by the expression levels of enzymes and proteins related to lipid metabolism assessed by western blotting: protein expression levels of the peroxisome proliferator-activated receptor γ and CCATT/enhancer binding protein α decreased significantly, while hormone-sensitive lipase and phospho-AMP-activated protein kinase levels increased in the GAE-fed mice compared with ob/ob control mice. These findings demonstrate that GAE regulates plasma lipid profiles and increasing highdensity lipoprotein cholesterol levels as well as by regulating the expression levels of lipid metabolic factors, resulting in reduced weight gain in ob/ob mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: Review and analysis. Am. J. Clin. Nutr. 67: 18–24 (1998)

    CAS  Google Scholar 

  2. Kopelman PG. Obesity as a medical problem. Nature 404: 635–643 (2000)

    CAS  Google Scholar 

  3. Jobu K, Yokota J, Yoshioka S, Moriyama H, Murata S, Ohishi M, Ukeda H, Miyamura M. Effects of Goishi tea on diet-induced obesity in mice. Food Res. Int. 54: 324–329 (2013)

    Article  CAS  Google Scholar 

  4. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 104: 531–543 (2001)

    Article  CAS  Google Scholar 

  5. Lee YS, Cha BY, Choi SS, Wang XX, Choi BK, Yonezawa T, Teruya T, Nagai K, Woo JT. Effects of a Citrus depressa Hayata (shiikuwavsa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine 18: 648–654 (2001)

    Article  Google Scholar 

  6. Hofbauer KC, Nicholson JR. Pharmacotherapy of obesity. Exp. Clin. Endocr. Diab. 114: 475–484 (2006)

    Article  CAS  Google Scholar 

  7. Ho CH, Kingree JB, Thompson MP. Associations between juvenile delinquency and weight-related variables: Analyses from a national sample of high school students. Int. J. Eat. Disorder. 39: 477–483 (2006)

    Article  Google Scholar 

  8. Moreno D, Ilic N, Poulev A, Brasaemle D, Fried S, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition 19: 876–879 (2003)

    Article  CAS  Google Scholar 

  9. Kadam SU, Prabhasankar P. Marine foods as functional ingredients in bakery and pasta products. Food Res. Int. 43: 1975–1980 (2010)

    Article  Google Scholar 

  10. Yan X, Nagata T. Antioxidative activities in some common seaweeds. Plant Food. Hum. Nutr. 52: 253–262 (1998)

    Article  CAS  Google Scholar 

  11. Fu YW, Hou WY. The immunostimulatory effects of hot-water extract of Gelidium amansii via immersion, injection and dietary administrations on white shrimp Litopenaeus vannamei and its resistance against Vibro alginolyticus. Fish Shellfish Immun. 22: 673–685 (2007)

    Article  Google Scholar 

  12. Yusan H, Song J. Immunomodulation and antitumor activity of kappacarrageenan oligosaccharides. Cancer Lett. 243: 228–234 (2006)

    Article  Google Scholar 

  13. Meda A, Lamien CE, Romito J, Nacoulma OG. Determination of the total phenolic, flavonoid and praline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 91: 571–577 (2005)

    Article  CAS  Google Scholar 

  14. Biglari F, Alkarkhi AFM, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636–1641 (2008)

    Article  CAS  Google Scholar 

  15. Friedewald WT, Levy RI, Fredirickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifusege. Clin. Chem. 18: 499–502 (1972)

    CAS  Google Scholar 

  16. Folch J, Less M, sloan-Stanley GH. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509 (1957)

    CAS  Google Scholar 

  17. Lee JS, Kim KJ, Kim YH, Kim DB, Shin GH, Cho JH, Kim BK, Lee BY, Lee OH. Codonopsis lanceolata extract prevents diets-induced obesity in C57BL/6 mice. Nutrients 6: 4663–4677 (2014)

    Article  Google Scholar 

  18. Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, Kim MY, Yoon M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaries in high-fat diet-induced obese mice. J. Ethnopharmacol. 115: 263–270 (2008)

    Article  Google Scholar 

  19. Loncar D, Afzelius BA, Cannon B. Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes. J. Ultra. Mol. Struct. R. 101: 109–122 (1988)

    Article  CAS  Google Scholar 

  20. Caesar R, Drevon CA. Pancreatic contamination of mesenteric adipose tissue samples can be avoided by adjusted dissection procedures. J. Lipid Res. 49: 1588–1594 (2008)

    Article  CAS  Google Scholar 

  21. Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPa and PPAR?. Fitoterapia 92: 260–269 (2014)

    Article  CAS  Google Scholar 

  22. Hossain MK, Dayem AA, Han J, Yin Y, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 17: 569 (2016)

    Article  Google Scholar 

  23. den Boer M, Voshol PJ, Kuipers F, Havekes LM, Romijn JA. Hepatic steatosis: A mediator of the metabolic syndrome. Lessons from animal models. Arterioscl. Throm. Vas. 24: 644–649 (2004)

    Article  Google Scholar 

  24. Arsenault BJ, Boekholdt SM, Kastelein JJ. Lipid parameters for measuring risk of cardiovascular disease. Nat. Rev. Cardiol. 8: 197–206 (2011)

    Article  CAS  Google Scholar 

  25. Okai Y, Higashi-Okai K, Yano Y, Otani S. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett. 100: 235–240 (1996)

    Article  CAS  Google Scholar 

  26. He ML, Wang Y, You JS, Mir PS, McAllister TA. Effect of a seaweed extract on fatty acid accumulation and glycerol-3-phosphate dehydrogenase activity in 3T3-L1 adipocytes. Lipids 44: 125–132 (2009)

    Article  CAS  Google Scholar 

  27. Kim MJ, Chang UJ, Lee JS. Inhibitory effects of fucoidan in 3T3-L1 adipocyte differentiation. Mar. Biotechnol. 5: 557–562 (2009)

    Article  Google Scholar 

  28. Seo MJ, Lee OH, Choi HS, Lee BY. Extract from edible red seaweed (Gelidium amansii) inhibits lipid accumulation and ROS production during differentiation in 3T3-L1 cells. Prev. Nutr. Food Sci. 17: 129–135 (2012)

    Article  Google Scholar 

  29. Díez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 148: 293–300 (2003)

    Article  Google Scholar 

  30. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271: 10697–10703 (1996)

    Article  CAS  Google Scholar 

  31. Bruun JM, Lihn AS, Werdich C, Pedersen SB, Toubro S, Astrup A, Richelsen B. Regulation of adiponectin by adipose tissue-derived cytokines: In vivo and in vitro investigations in humans. Am. J. Physiol.-Endoc. M. 285: 527–533 (2003)

    Google Scholar 

  32. Kitano Y, Murazumi K, Duan J, Kurose K, Kobayashi S, Sugawara T, Hirata T. Effect of dietary porphyrin from the red alga, Porphyra yezoenosis, on glucose metabolism in diabetic KK-Ay mice. J. Nutr. Sci. Vitaminol. 58: 14–19 (2012)

    Article  CAS  Google Scholar 

  33. Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology 149: 942–949 (2008)

    Article  CAS  Google Scholar 

  34. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. T. 31: 1120–1124 (2003)

    Article  CAS  Google Scholar 

  35. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol.-Gastr. L. 293: 1–4 (2007)

    Google Scholar 

  36. Garmen GY, Victor SM. Signalling mechanisms regulating lipolysis. Cell. Signal. 18: 401–408 (2006)

    Article  Google Scholar 

  37. Jungtrakoon P, Plengvidhya N, Tangjittipokin W, Chimnaronk S, Salaemae W, Chongjaroen N, Charnprasert K, Sujjitjoon J, Srisawat C, Yenchitsomanus PT. Novel adiponection variants identified in type 2 diabetic patients reveal multimerization and secretion defects. PLoS ONE 6: 26792 (2011)

    Article  Google Scholar 

  38. Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem. Sci. 29: 18–24 (2004)

    Article  CAS  Google Scholar 

  39. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujji N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108: 1167–1174 (2001)

    Article  CAS  Google Scholar 

  40. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78: 783–809 (1998)

    CAS  Google Scholar 

  41. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885–896 (2006)

    Article  CAS  Google Scholar 

  42. Tontonoz P, Spiegelman BM. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem. 77: 289–312 (2008)

    Article  CAS  Google Scholar 

  43. Woo MS, Choi HS, Lee OH, Lee BY. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells. Phytother. Res. 27: 1102–1105 (2013)

    Article  Google Scholar 

  44. Mohammed A, Al-Numair KS, Balakrishana A. Docking studies on the interaction of flavonoids with fat mass and obesity associated protein. Pak. J. Pharm. Sci. 28: 1647–1653 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Sook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MH., Kang, JH., Kim, HJ. et al. Gelidium amansii ethanol extract suppresses fat accumulation by down-regulating adipogenic transcription factors in ob/ob mice model. Food Sci Biotechnol 26, 207–212 (2017). https://doi.org/10.1007/s10068-017-0028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0028-z

Keywords

Navigation