Food Science and Biotechnology

, Volume 26, Issue 1, pp 195–200 | Cite as

In vitro anti-obesity effects of sesamol mediated by adenosine monophosphate-activated protein kinase and mitogen-activated protein kinase signaling in 3T3-L1 cells

  • Geon Go
  • Jung-Suk Sung
  • Seung-Cheol Jee
  • Min Kim
  • Won-Hee Jang
  • Kyu-Young Kang
  • Dae-Young Kim
  • Sihyoung Lee
  • Han-Seung Shin


Sesamol is a phenol derivative of sesame oil and a potent anti-oxidant, anti-inflammatory, anti-hepatotoxic, and anti-aging compound. We investigated the effects of sesamol on the molecular mechanisms of adipogenesis in 3T3-L1 preadipocytes. The intracellular lipid accumulation accompanied by increased extracellular release of free glycerol was decreased during differentiation on treating 3T3-L1 with sesamol. Sesamol treatment on 3T3-L1 inhibited adipogenic differentiation by down-regulating adipogenesis-related factors (C/EBPα, PPARγ, and SREBP-1). Lipid accumulation was repressed by decreasing fatty acid synthase and by up-regulating lipolysis-response genes (HSL and LPL). The molecular mechanisms of sesamol-induced inhibition in adipogenesis were mediated by increased levels of phosphorylated adenosine monophosphate-activated protein kinase and its substrate acetyl-CoA carboxylase. Sesamol treatment, in turn, modulated the different members of the mitogenactivated protein kinase family by suppressing phosphorylation of ERK 1/2 and JNK and by increasing the phosphorylation of p38. In summary, sesamol inhibits adipogenic differentiation by reducing phosphorylation levels of ERK 1/2 and JNK while inducing lipolysis by activating p38 and AMPK. Our results demonstrate that the molecular mechanisms of in vitro anti-obesity effects of sesamol are due to the combined effects of preventing both lipid accumulation and adipogenesis.


sesamol adipogenesis anti-obesity AMPK lipolysis MAPK 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu YH, Ginsberg HN. Adipocyte signaling and lipid homeostasis: Sequelae of insulin-resistant adipose tissue. Circ. Res. 96: 1042–1052 (2005)CrossRefGoogle Scholar
  2. 2.
    Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. Tea catechin suppresses adipocyte differentiation accompanied by downregulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci. Biotech. Bioch. 68: 2353–2359 (2004)CrossRefGoogle Scholar
  3. 3.
    Kopelman PG. Obesity as a medical problem. Nature 404: 635–643 (2000)Google Scholar
  4. 4.
    Visscher TL, Seidell JC. The public health impact of obesity. Annu. Rev. Publ. Health 22: 355–375 (2001)CrossRefGoogle Scholar
  5. 5.
    Thijssen E, Van Caam A, van der Kraan PM. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 54: 588–600 (2015)CrossRefGoogle Scholar
  6. 6.
    McGill AT. Causes of metabolic syndrome and obesity-related co-morbidities Part 1: A composite unifying theory review of human-specific co-adaptations to brain energy consumption. Arch. Public Health 72: 30 (2014)CrossRefGoogle Scholar
  7. 7.
    Kim SS, Seo JY, Kim BR, Kim HJ, Lee HY, Kim JS. Anti-obesity activity of peanut sprout extract. Food Sci. Biotechnol. 23: 601–607 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang YW, Jones PJ. Conjugated linoleic acid and obesity control: Efficacy and mechanisms. Int. J. Obes. Relat. Metab. Disord. 28: 941–955 (2004)CrossRefGoogle Scholar
  9. 9.
    Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr. 135: 165–171 (2005)Google Scholar
  10. 10.
    Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets. 8: 99–111 (2008)CrossRefGoogle Scholar
  11. 11.
    Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12: 207–233 (1992)CrossRefGoogle Scholar
  12. 12.
    Boney CM, Moats-Staats BM, Stiles AD, D'Ercole AJ. Expression of insulin-like growth factor-I (IGF-I) and IGF-binding proteins during adipogenesis. Endocrinology 135: 1863–1868 (1994)Google Scholar
  13. 13.
    Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147–1156 (1994)CrossRefGoogle Scholar
  14. 14.
    MacDougald OA, Cornelius P, Liu R, Lane MD. Insulin regulates transcription of the CCAAT/enhancer binding protein (C/EBP) alpha, beta, and delta genes in fully-differentiated 3T3-L1 adipocytes. J. Biol. Chem. 270: 647–654 (1995)CrossRefGoogle Scholar
  15. 15.
    Hardie DG, Hawley SA. AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays 23: 1112–1119 (2001)CrossRefGoogle Scholar
  16. 16.
    Prusty D, Park BH, Davis KE, Farmer SR. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 277: 46226–46232 (2002)CrossRefGoogle Scholar
  17. 17.
    Belmonte N, Phillips BW, Massiera F, Villageois P, Wdziekonski B, Saint-Marc P, Nichols J, Aubert J, Saeki K, Yuo A, Narumiya S, Ailhaud G, Dani C. Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins beta and -delta in preadipocytes. Mol. Endocrinol. 15: 2037–2049 (2001)Google Scholar
  18. 18.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 420: 333–336 (2002)CrossRefGoogle Scholar
  19. 19.
    Yang TT, Xiong Q, Enslen H, Davis RJ, Chow CW. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. Mol. Cell. Biol. 22: 3892–3904 (2002)CrossRefGoogle Scholar
  20. 20.
    Pan J, Kim M, Kim J, Cho Y, Shin H-S, Sung J-S, Park T, Yoon H-G, Park S, Kim Y. Inhibition of the lipogenesis in liver and adipose tissue of diet-induced obese C57BL/6 mice by feeding oleic acid-rich sesame oil. Food Sci. Biotechnol. 24: 1115–1121 (2015)CrossRefGoogle Scholar
  21. 21.
    Chu PY, Hsu DZ, Hsu PY, Liu MY. Sesamol down-regulates the lipopolysaccharide-induced inflammatory response by inhibiting nuclear factor-kappa B activation. Innate Immun. 16: 333–339 (2010)CrossRefGoogle Scholar
  22. 22.
    Kumar N, Mudgal J, Parihar VK, Nayak PG, Kutty NG, Rao CM. Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia. Lipids 48: 633–638 (2013)CrossRefGoogle Scholar
  23. 23.
    Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J. Pain 11: 950–957 (2010)CrossRefGoogle Scholar
  24. 24.
    Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS. Triacylglycerol metabolism in adipose tissue. Future Lipidol. 2: 229–237 (2007)CrossRefGoogle Scholar
  25. 25.
    Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717–726 (2008)CrossRefGoogle Scholar
  26. 26.
    Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor gamma and C/EBPalpha synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 34: 939–954 (2014)CrossRefGoogle Scholar
  27. 27.
    Bost F, Aouadi M, Caron L, Binetruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87: 51–56 (2005)CrossRefGoogle Scholar
  28. 28.
    Sakaue H, Ogawa W, Matsumoto M, Kuroda S, Takata M, Sugimoto T, Spiegelman BM, Kasuga M. Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. J. Biol. Chem. 273: 28945–28952 (1998)CrossRefGoogle Scholar
  29. 29.
    Poudel B, Lim SW, Ki HH, Nepali S, Lee YM, Kim DK. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice. Int. J. Mol. Med. 34: 1401–1408 (2014)Google Scholar
  30. 30.
    Wang M, Wang JJ, Li J, Park K, Qian X, Ma JX, Zhang SX. Pigment epitheliumderived factor suppresses adipogenesis via inhibition of the MAPK/ERK pathway in 3T3-L1 preadipocytes. Am. J. Physiol.-Endoc. M. 297: E1378-E1387 (2009)Google Scholar
  31. 31.
    Kimura I, Konishi M, Asaki T, Furukawa N, Ukai K, Mori M, Hirasawa A, Tsujimoto G, Ohta M, Itoh N, Fujimoto M. Neudesin, an extracellular hemebinding protein, suppresses adipogenesis in 3T3-L1 cells via the MAPK cascade. Biochem Bioph. Res. Co. 381: 75–80 (2009)CrossRefGoogle Scholar
  32. 32.
    Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE. Insulin-and mitogen-activated protein kinasemediated phosphorylation and activation of peroxisome proliferatoractivated receptor gamma. J. Biol. Chem. 271: 31771–31774 (1996)CrossRefGoogle Scholar
  33. 33.
    Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem. J. 361: 621–627 (2002)CrossRefGoogle Scholar
  34. 34.
    Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binetruy B, Bost F. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes. 55: 281–289 (2006)CrossRefGoogle Scholar
  35. 35.
    Hata K, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell 14: 545–555 (2003)CrossRefGoogle Scholar
  36. 36.
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13: 376–388 (2011)CrossRefGoogle Scholar
  37. 37.
    Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1: 15–25 (2005)CrossRefGoogle Scholar
  38. 38.
    Gao Y, Zhou Y, Xu A, Wu D. Effects of an AMP-activated protein kinase inhibitor, compound C, on adipogenic differentiation of 3T3-L1 cells. Biol. Pharm. Bull. 31: 1716–1722 (2008)CrossRefGoogle Scholar
  39. 39.
    Hardie DG, Scott JW, Pan DA, Hudson ER. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546: 113–120 (2003)CrossRefGoogle Scholar
  40. 40.
    Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. T. 31: 1120–1124 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Geon Go
    • 1
  • Jung-Suk Sung
    • 1
  • Seung-Cheol Jee
    • 1
  • Min Kim
    • 1
  • Won-Hee Jang
    • 1
  • Kyu-Young Kang
    • 2
  • Dae-Young Kim
    • 2
  • Sihyoung Lee
    • 3
  • Han-Seung Shin
    • 3
  1. 1.Department of Life ScienceDongguk University-SeoulGoyang, GyeonggiKorea
  2. 2.Department of Biological and Environmental ScienceDongguk University-SeoulGoyang, GyeonggiKorea
  3. 3.Department of Food Science and BiotechnologyDongguk University-SeoulGoyang, GyeonggiKorea

Personalised recommendations