Food Science and Biotechnology

, Volume 26, Issue 1, pp 173–179 | Cite as

Lactic acid bacteria isolated from raw and fermented pork products: Identification and characterization of catalase-producing Pediococcus pentosaceus

  • Suree Nanasombat
  • Patcharee Treebavonkusol
  • Sunisa Kittisrisopit
  • Thitirut Jaichalad
  • Saranya Phunpruch
  • Achaporn Kootmas
  • Imboon Nualsri


Lactic acid bacteria (LAB) from raw and fermented pork samples were screened for their inhibitory activity by an agar spot test in order to obtain a LAB strain with suitable property to be used as meat starter cultures. Among the 174 isolates, 73 were positive to inhibit at least one of the seven indicator bacteria, which were further characterized. The most suitable isolate was isolate P0805, identified as Pediococcus pentosaceus. This bacterium was catalase- and nitrate reductase-positive and amino acid decarboxylase-negative; moreover, it produced inhibitory substances against Salmonella Typhimurium with the activity of the partially purified inhibitory substances of 409,600 AU/mL. To further characterize the catalase-producing ability of P. pentosaceus P0805, the effect of hematin on its catalase activity in Sausage Model Broth (SMB) was evaluated, and it enhanced catalase production. The catalase activity was found in both SMB with and without hematin. It was concluded that catalase produced by this bacterium was heme-independent catalase.


lactic acid bacteria inhibitory substance catalase meat starter culture Pediococcus pentosaceus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caplice E, Fitzgerald GF. Food fermentations: Role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131–149 (1999)CrossRefGoogle Scholar
  2. 2.
    Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernández M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64: S95–S100 (2010)CrossRefGoogle Scholar
  3. 3.
    Smith LJ, Palumbo AS. Use of starter cultures in meats. J. Food Protect. 46: 997–1006 (1983)CrossRefGoogle Scholar
  4. 4.
    Ammor MS, Mayo B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76: 138–146 (2007)CrossRefGoogle Scholar
  5. 5.
    Arena MP, Russo P, Capozzi V, López P, Fiocco D, Spano G. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: A novel promising application of probiotics. Appl. Microbiol. Biot. 98: 7569–7581 (2014)CrossRefGoogle Scholar
  6. 6.
    Erkkilä S, Petäjä E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297–300 (2000)CrossRefGoogle Scholar
  7. 7.
    Mares A, Neyts K, Debevere J. Influence of pH, salt and nitrite on the heme–dependent catalase activity of lactic acid bacteria. Int. J Food Microbiol. 24: 191–198 (1994)CrossRefGoogle Scholar
  8. 8.
    Pshezhetskii VS, Jaroslavov AA. Activation of hematin catalase function by ethylenediamine. FEBS Lett. 49: 29–32 (1974)CrossRefGoogle Scholar
  9. 9.
    Hammes WP, Bantleon A, Min S. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Lett. 87: 165–173 (1990)CrossRefGoogle Scholar
  10. 10.
    Fleming HP, Etchells JL, Costilow RN. Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol. 30: 1040–1042 (1975)Google Scholar
  11. 11.
    Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Sys. Appl. Microbiol. 15: 460–468 (1992)CrossRefGoogle Scholar
  12. 12.
    Miralles MC, Flores J, Perez-Martinez G. Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiol. 13: 227–236 (1996)CrossRefGoogle Scholar
  13. 13.
    Bennett RW, Lancette GA. Bacteriological Analytical Manual Chapter 12 Staphylococcus aureus. U.S. Food and Drug Administration, Silver Spring, USA (2001). Available from: Accessed Dec. 12, 2013.Google Scholar
  14. 14.
    Joosten HMLJ, Northolt MD. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microb. 55: 2356–2359 (1989)Google Scholar
  15. 15.
    Bover-Cid S, Holzapfel WH. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53: 33–41 (1999)CrossRefGoogle Scholar
  16. 16.
    Paludan-Müller C, Madsen M, Sophanodora P, Gram L, Møller PL. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int. J. Food Microbiol. 73: 61–70 (2002)CrossRefGoogle Scholar
  17. 17.
    Axelsson L. Lactic acid bacteria: Classification and physiology. pp.1–66. In: Lactic Acid Bacteria: Microbiological and Functional Aspects. Salminen S, von Wright A, Ouwehand A (eds). Marcel Dekker Inc., New York, NY, USA (2004)Google Scholar
  18. 18.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 215: 403–410 (1990)CrossRefGoogle Scholar
  19. 19.
    Jorgensen JH, Turnidge JD, Washington JA. Antibacterial susceptibility test: Dilution and disk diffusion methods. pp. 1526–1562. In: Manual of Clinical Microbiology. Murray PR, Barron ER, Praller MA, Tenover FC, Yolken RH (eds). ASM Press, Washington DC, USA (1999)Google Scholar
  20. 20.
    Schillinger U, Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microb. 55: 1901–1906 (1989)Google Scholar
  21. 21.
    Yousef AE, Carlstrom C. Food Microbiology: A Laboratory Manual. John Wiley & Sons Inc, Hoboken, NY, USA. pp. 231–248 (2003)Google Scholar
  22. 22.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)CrossRefGoogle Scholar
  23. 23.
    Swetwiwathana A, Leutz U, Lotong N, Fischer A. Controlling the growth of Salmonella anatum in Nham-Effect of meat starter cultures, nitrate, nitrite and garlic. Fleischwirtschaft 9: 124–128 (1999)Google Scholar
  24. 24.
    Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26: 227–231 (1980)Google Scholar
  25. 25.
    Pine L, Hoffman PS, Malcolm GB, Benson RF, Keen MG. Determination of catalase, peroxidase, and superoxide dismutase within the genus Legionella. J. Clin. Microbiol. 20: 421–429 (1984)Google Scholar
  26. 26.
    Vidhyasagar V, Jeevaratnam K. Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J. Funct. Foods 5: 235–243 (2013)CrossRefGoogle Scholar
  27. 27.
    Hummel AS, Hertel C, Holzapfel WH, Franz CMAP. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microb. 73: 730–739 (2007)CrossRefGoogle Scholar
  28. 28.
    Doonan S. Concentration of extracts. pp. 85–90. In: Protein Purification Protocols. Cutler P (ed). Humana Press Inc., Totowa, NJ, USA (2004)Google Scholar
  29. 29.
    Cleveland J, Montville T J, Nes I F, Chikindas ML. B acteriocins: S afe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1–20 (2001)CrossRefGoogle Scholar
  30. 30.
    Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol. 130: 219–226 (2009)CrossRefGoogle Scholar
  31. 31.
    Engesser DM, Hammes WP. Non-heme catalase activity of lactic acid bacteria. Syst. Appl. Microbiol. 17: 11–19 (1994)CrossRefGoogle Scholar
  32. 32.
    Domínguez R, Munekata PE, Agregán R, Lorenzo JM. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT-Food Sci. Technol. 71: 47–53 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Suree Nanasombat
    • 1
  • Patcharee Treebavonkusol
    • 1
  • Sunisa Kittisrisopit
    • 1
  • Thitirut Jaichalad
    • 1
  • Saranya Phunpruch
    • 1
  • Achaporn Kootmas
    • 1
  • Imboon Nualsri
    • 1
  1. 1.Department of Biology, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations