Skip to main content
Log in

Lactic acid bacteria isolated from raw and fermented pork products: Identification and characterization of catalase-producing Pediococcus pentosaceus

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) from raw and fermented pork samples were screened for their inhibitory activity by an agar spot test in order to obtain a LAB strain with suitable property to be used as meat starter cultures. Among the 174 isolates, 73 were positive to inhibit at least one of the seven indicator bacteria, which were further characterized. The most suitable isolate was isolate P0805, identified as Pediococcus pentosaceus. This bacterium was catalase- and nitrate reductase-positive and amino acid decarboxylase-negative; moreover, it produced inhibitory substances against Salmonella Typhimurium with the activity of the partially purified inhibitory substances of 409,600 AU/mL. To further characterize the catalase-producing ability of P. pentosaceus P0805, the effect of hematin on its catalase activity in Sausage Model Broth (SMB) was evaluated, and it enhanced catalase production. The catalase activity was found in both SMB with and without hematin. It was concluded that catalase produced by this bacterium was heme-independent catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caplice E, Fitzgerald GF. Food fermentations: Role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50: 131–149 (1999)

    Article  CAS  Google Scholar 

  2. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernández M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64: S95–S100 (2010)

    Article  CAS  Google Scholar 

  3. Smith LJ, Palumbo AS. Use of starter cultures in meats. J. Food Protect. 46: 997–1006 (1983)

    Article  Google Scholar 

  4. Ammor MS, Mayo B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76: 138–146 (2007)

    Article  CAS  Google Scholar 

  5. Arena MP, Russo P, Capozzi V, López P, Fiocco D, Spano G. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: A novel promising application of probiotics. Appl. Microbiol. Biot. 98: 7569–7581 (2014)

    Article  CAS  Google Scholar 

  6. Erkkilä S, Petäjä E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297–300 (2000)

    Article  Google Scholar 

  7. Mares A, Neyts K, Debevere J. Influence of pH, salt and nitrite on the heme–dependent catalase activity of lactic acid bacteria. Int. J Food Microbiol. 24: 191–198 (1994)

    Article  CAS  Google Scholar 

  8. Pshezhetskii VS, Jaroslavov AA. Activation of hematin catalase function by ethylenediamine. FEBS Lett. 49: 29–32 (1974)

    Article  CAS  Google Scholar 

  9. Hammes WP, Bantleon A, Min S. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Lett. 87: 165–173 (1990)

    Article  CAS  Google Scholar 

  10. Fleming HP, Etchells JL, Costilow RN. Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol. 30: 1040–1042 (1975)

    CAS  Google Scholar 

  11. Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Sys. Appl. Microbiol. 15: 460–468 (1992)

    Article  CAS  Google Scholar 

  12. Miralles MC, Flores J, Perez-Martinez G. Biochemical tests for the selection of Staphylococcus strains as potential meat starter cultures. Food Microbiol. 13: 227–236 (1996)

    Article  CAS  Google Scholar 

  13. Bennett RW, Lancette GA. Bacteriological Analytical Manual Chapter 12 Staphylococcus aureus. U.S. Food and Drug Administration, Silver Spring, USA (2001). Available from: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm071429.htm Accessed Dec. 12, 2013.

  14. Joosten HMLJ, Northolt MD. Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microb. 55: 2356–2359 (1989)

    CAS  Google Scholar 

  15. Bover-Cid S, Holzapfel WH. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53: 33–41 (1999)

    Article  CAS  Google Scholar 

  16. Paludan-Müller C, Madsen M, Sophanodora P, Gram L, Møller PL. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int. J. Food Microbiol. 73: 61–70 (2002)

    Article  Google Scholar 

  17. Axelsson L. Lactic acid bacteria: Classification and physiology. pp.1–66. In: Lactic Acid Bacteria: Microbiological and Functional Aspects. Salminen S, von Wright A, Ouwehand A (eds). Marcel Dekker Inc., New York, NY, USA (2004)

    Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 215: 403–410 (1990)

    Article  CAS  Google Scholar 

  19. Jorgensen JH, Turnidge JD, Washington JA. Antibacterial susceptibility test: Dilution and disk diffusion methods. pp. 1526–1562. In: Manual of Clinical Microbiology. Murray PR, Barron ER, Praller MA, Tenover FC, Yolken RH (eds). ASM Press, Washington DC, USA (1999)

    Google Scholar 

  20. Schillinger U, Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microb. 55: 1901–1906 (1989)

    CAS  Google Scholar 

  21. Yousef AE, Carlstrom C. Food Microbiology: A Laboratory Manual. John Wiley & Sons Inc, Hoboken, NY, USA. pp. 231–248 (2003)

  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  23. Swetwiwathana A, Leutz U, Lotong N, Fischer A. Controlling the growth of Salmonella anatum in Nham-Effect of meat starter cultures, nitrate, nitrite and garlic. Fleischwirtschaft 9: 124–128 (1999)

    Google Scholar 

  24. Fossati P, Prencipe L, Berti G. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26: 227–231 (1980)

    CAS  Google Scholar 

  25. Pine L, Hoffman PS, Malcolm GB, Benson RF, Keen MG. Determination of catalase, peroxidase, and superoxide dismutase within the genus Legionella. J. Clin. Microbiol. 20: 421–429 (1984)

    CAS  Google Scholar 

  26. Vidhyasagar V, Jeevaratnam K. Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro. J. Funct. Foods 5: 235–243 (2013)

    Article  CAS  Google Scholar 

  27. Hummel AS, Hertel C, Holzapfel WH, Franz CMAP. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microb. 73: 730–739 (2007)

    Article  CAS  Google Scholar 

  28. Doonan S. Concentration of extracts. pp. 85–90. In: Protein Purification Protocols. Cutler P (ed). Humana Press Inc., Totowa, NJ, USA (2004)

    Google Scholar 

  29. Cleveland J, Montville T J, Nes I F, Chikindas ML. B acteriocins: S afe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71: 1–20 (2001)

    Article  CAS  Google Scholar 

  30. Maragkoudakis PA, Mountzouris KC, Psyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol. 130: 219–226 (2009)

    Article  CAS  Google Scholar 

  31. Engesser DM, Hammes WP. Non-heme catalase activity of lactic acid bacteria. Syst. Appl. Microbiol. 17: 11–19 (1994)

    Article  CAS  Google Scholar 

  32. Domínguez R, Munekata PE, Agregán R, Lorenzo JM. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT-Food Sci. Technol. 71: 47–53 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suree Nanasombat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanasombat, S., Treebavonkusol, P., Kittisrisopit, S. et al. Lactic acid bacteria isolated from raw and fermented pork products: Identification and characterization of catalase-producing Pediococcus pentosaceus . Food Sci Biotechnol 26, 173–179 (2017). https://doi.org/10.1007/s10068-017-0023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0023-4

Keywords

Navigation