Food Science and Biotechnology

, Volume 26, Issue 1, pp 153–158 | Cite as

LAMP, PCR, and real-time PCR detection of Acetobacter aceti in yogurt

  • Wei Zhou
  • Yan Zhang
  • Shuang Wang
  • Yuehua Li
  • Jingjing Zhang
  • Cuixia Zhang
  • Zan Wang
  • Zhisheng Zhang
Article
  • 88 Downloads

Abstract

Acetic acid bacteria (AAB) can spoil food. Acetobacter aceti as a core subgroup of AAB is usually isolated from yogurt. A. aceti should be timely and effectively detected to prevent yogurt contamination. The present study focused on A. aceti to establish an assay that can be performed to detect AAB in yogurt. LAMP, PCR, and real-time PCR were applied and compared for detecting A. aceti from pure culture and artificially contaminated yogurt samples. In pure culture, LAMP showed the highest detection sensitivity with 10−1 CFU/mL. For yogurt samples, the sensitivity limit of LAMP was 102 CFU/mL, which was lower than that of real-time PCR (101 CFU/mL). The results indicated that these methods could be quickly and efficiently applied to detect A. aceti. As LAMP technology has low cost and high detection efficiency, it can potentially be applied for detecting A. aceti in production and quality control programs of yogurt.

Keywords

Acetobacter aceti yogurt LAMP PCR real-time PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleenwerck I, Camu N, Engelbeen K, de Winter T, Vandemeulebroecke K, de Vos P, De Vuyst L. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int. J. Syst. Evol. Micr. 57: 1647–1652 (2007)Google Scholar
  2. 2.
    Gullo M, Giudici P. Acetic acid bacteria in traditional balsamic vinegar: Phenotypic traits relevant for starter cultures selection. Int. J. Food Microbiol. 125: 46–53 (2008)CrossRefGoogle Scholar
  3. 3.
    Raspor P, Goranovic D. Biotechnological applications of acetic acid bacteria. Crit. Rev. Biotechnol. 28: 101–124 (2008)CrossRefGoogle Scholar
  4. 4.
    Wu W, Gai BC, Ji BP. Study on the isolation and identifiation of microbes of Kombucha. Food Sci. 25: 55–58 (2004)Google Scholar
  5. 5.
    Nwamaka NT, Chike AE. Bacteria population of some commercially prepared yogurt sold in Enugu State, Eastern Nigeria. Afr. J. Microbiol. Res. 4: 984–988 (2010)Google Scholar
  6. 6.
    Bartowsky EJ, Henschke PA. Acetic acid bacteria spoilage of bottled red wine—a review. Int. J. Food Microbiol. 125: 60–70 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen SJ. Detection and identification of acetic acid bacteria in beer brewing. Brew. Sci. Technol. 4: 59–61 (2006)Google Scholar
  8. 8.
    Ouoba LI, Kando C, Parkouda C, Sawadogo-Lingani H, Diawara B, Sutherland JP. The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: Identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. J. Appl. Microbiol. 113: 1428–1441 (2012)CrossRefGoogle Scholar
  9. 9.
    Weng HZ, Cheng YF. Study on microbial disease of grape wine. Liquor-Making Sci. Tech. 8: 132–135 (2011)Google Scholar
  10. 10.
    Andres-Barrao C, Saad MM, Chappuis ML, Boffa M, Perret X, Ortega Perez R, Barja F. Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J. Proteomics 75: 1701–1717 (2012)CrossRefGoogle Scholar
  11. 11.
    Sakurai K, Arai H, Ishii M, Igarashi Y. Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157: 899–910 (2011)CrossRefGoogle Scholar
  12. 12.
    Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: Structure, mode of action, and applications in biotechnology. Appl. Microbiol. Biot. 86: 1257–1265 (2010)CrossRefGoogle Scholar
  13. 13.
    Cleenwerck I, de Vos P. Polyphasic taxonomy of acetic acid bacteria: An overview of the currently applied methodology. Int. J. Food Microbiol. 125: 2–14 (2008)CrossRefGoogle Scholar
  14. 14.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: e63–e63 (2000)CrossRefGoogle Scholar
  15. 15.
    Gammon KS, Livens S, Pawlowsky K, Rawling SJ, Chandra S, Middleton AM. Development of real-time PCR methods for the rapid detection of low concentrations of Gluconobacter and Gluconacetobacter species in an electrolyte replacement drink. Lett. Appl. Microbiol. 44: 262–267 (2007)CrossRefGoogle Scholar
  16. 16.
    Torija MJ, Mateo E, Guillamon JM, Mas A. Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan-MGB probes. Food Microbiol. 27: 257–265 (2010)CrossRefGoogle Scholar
  17. 17.
    Valera MJ, Torija MJ, Mas A, Mateo E. Acetobacter malorum and Acetobacter cerevisiae identification and quantification by real-time PCR with TaqMan-MGB probes. Food Microbiol. 36: 30–39 (2013)CrossRefGoogle Scholar
  18. 18.
    Scheirlinck I, Van Der Meulen R, Van Schoor A, Vancanneyt M, de Vuyst L, Vandamme P, Huys G. Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting. Appl. Environ. Microb. 74: 2414–2423 (2008)CrossRefGoogle Scholar
  19. 19.
    Gulitz A, Stadie J, Ehrmann MA, Ludwig W, Vogel RF. Comparative phylobiomic analysis of the bacterial community of water kefir by 16S rRNA gene amplicon sequencing and ARDRA analysis. J. Appl. Microbiol. 114: 1082–1091 (2013)CrossRefGoogle Scholar
  20. 20.
    de Vuyst L, Camu N, de Winter T, Vandemeulebroecke K, Van De Perre V, Vancanneyt M, de Vos P, Cleenwerck I. Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int. J. Food Microbiol. 125: 79–90 (2008)CrossRefGoogle Scholar
  21. 21.
    Ohtsuka K, Yanagawa K, Takatori K, Hara-Kudo Y. Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates. Appl. Environ. Microb. 71: 6730–6735 (2005)CrossRefGoogle Scholar
  22. 22.
    Li C, Chen Z, Meng C, Liu G. Rapid detection of duck hepatitis A virus genotype C using reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 196: 193–198 (2014)CrossRefGoogle Scholar
  23. 23.
    Cai KZ, Xue CL, Zhang M. Loop-mediated isothermal amplification for detection of Staphylococcus aureusin porcine blood. Meat Res. 26: 27–30 (2012)Google Scholar
  24. 24.
    Lu YX, Meng ZX, Ma XY, Wang Y, Zhang XZ, Zhang W. Rapid detection of Listeria monocytogenes in milk powder by loop-mediated isothermal amplification. Mod. Food Sci. Technol. 28: 703–706 (2012)Google Scholar
  25. 25.
    Wu Q, Li YX, Huang F, Zeng Y. Rapid detection of Vibrio parahaemolyticus from 145 intestinal diarrhea samples by LAMP. Chinese J. Health Lab. Technol. 22: 774–775 (2012)Google Scholar
  26. 26.
    Gonzalez A, Guillamon JM, Mas A, Poblet M. Application of molecular methods for routine identification of acetic acid bacteria. Int. J. Food Microbiol. 108: 141–146 (2006)CrossRefGoogle Scholar
  27. 27.
    Gonzalez A, Hierro N, Poblet M, Mas A, Guillamon JM. Enumeration and detection of acetic acid bacteria by real-time PCR and nested PCR. FEMS Microbiol. Lett. 254: 123–128 (2006)CrossRefGoogle Scholar
  28. 28.
    Gulitz A, Stadie J, Ehrmann MA, Ludwig W, Vogel RF. Comparative phylobiomic analysis of the bacterial community of water kefir by 16S rRNA gene amplicon sequencing and ARDRA analysis. J. Appl. Microbiol. 114: 1082–1091 (2013)CrossRefGoogle Scholar
  29. 29.
    Shao JJ, Zhou GQ. Loop-mediated isothermal amplification technology and its application in molecular diagnostics. Pract. Diagn. Treat. Mag. 21: 450–453 (2007) (In Chinese)Google Scholar
  30. 30.
    Spencer D, Yasuyoshi M, Julie W. Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J. Clin. Microbiol. 48: 2866–2871 (2010)CrossRefGoogle Scholar
  31. 31.
    Xuemei L, Yuhao L, Cheng GX, Jian RQ, Jian YH, Min F, Li QT, Wei XJ, Ming L, Wei SC. Real-time fluorescence loop-mediated isothermal amplification for the diagnosis of hemorrhagic enteritis virus. Virus Res. 183C: 50–55 (2014)Google Scholar
  32. 32.
    Lucchi NW, Demas A, Narayanan J, Sumari D, Kabanywanyi A, Kachur SP, Barnwell JW, Udhayakumar V. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 5: 73–73 (2009)Google Scholar
  33. 33.
    Akiko OK, Wang Y, Sachiko K, Kenji T, Yukimichi K, Fujiharu Y. Cloning and characterization of groESL operon in Acetobacter aceti. J. Biosci. Bioeng. 94: 140–147 (2002)CrossRefGoogle Scholar
  34. 34.
    Escalante A, Rodríguez ME, Martíne A, López-Munguia A, Bolívar F, Gosset G. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 235: 273–279 (2004)CrossRefGoogle Scholar
  35. 35.
    Wu J, Gullo M, Chen F, Giudici P. Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr. Microbiol. 60: 280–286 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Wei Zhou
    • 1
    • 2
  • Yan Zhang
    • 2
  • Shuang Wang
    • 2
  • Yuehua Li
    • 2
  • Jingjing Zhang
    • 2
  • Cuixia Zhang
    • 2
  • Zan Wang
    • 2
  • Zhisheng Zhang
    • 1
  1. 1.Agricultural University of HebeiCollege of Food Science and TechnologyBaodingChina
  2. 2.Hebei Food Inspection and Research InstituteHebei Food Safety Key LaboratoryShijiazhuangChina

Personalised recommendations