Skip to main content
Log in

Optimizing bioconversion of ferulic acid to vanillin by Bacillus subtilis in the stirred packed reactor using Box-Behnken design and desirability function

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A stirring bioreactor packed with a carbon fiber textiles (FT) biofilm formed by Bacillus subtilis was used to produce vanillin from ferulic acid. Biofilm formation was characterized by scanning electron microscopy. The interactive effects of three variables on vanillin molar yield (M) and conversion efficiency of ferulic acid (E) were evaluated by response surface methodology (RSM) with a Box-Behnken design (BBD). The optimal conversion conditions with a maximum overall desirability D of 0.983 were obtained by a desirability function. Considering the actual operation, the confirmation tests were performed using the slightly modified optimal conditions (initial ferulic acid concentration 1.55 g/L, temperature 35°C, stirring speed 220 rpm). The results showed that M and E were 57.42 and 93.53%, respectively. This was only 1.03% and 1.87%, respectively, different from the predicted values, confirming the validity of the predicted models. These revealed that the stirred packed reactor could be successfully used in vanillin bioconversion from ferulic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma Xk, Daugulis AJ. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing byproduct formation. Bioproc. Biosyst. Eng. 37: 891–899 (2014)

    CAS  Google Scholar 

  2. Vyrides I, Agathangelou M, Dimitriou R, Souroullas K, Salamex A, Ioannou A, Koutinas M. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid. World J. Microb. Biot. 31: 1291–1296 (2015)

    CAS  Google Scholar 

  3. Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J. Biotechnol. 156: 309–316 (2011)

    Article  Google Scholar 

  4. Kasana RC, Sharma UK, Sharma N, Sinha AK. Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr. Microbiol. 54: 457–461 (2007)

    Article  CAS  Google Scholar 

  5. Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW. Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol. Bioeng. 102: 200–208 (2009)

    Article  CAS  Google Scholar 

  6. Ma Xk, Daugulis AJ. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor. Biotechnol. Progr. 30: 207–214 (2014)

    Article  CAS  Google Scholar 

  7. Kaur B, Chakraborty D. Biotechnological and molecular approaches for vanillin production: A review. Appl. Biochem. Biotech. 169: 1353–1372 (2013)

    Article  CAS  Google Scholar 

  8. de Faveri D, Torre P, Aliakbarian B, Domínguez JM, Perego P, Converti A. Response surface modeling of vanillin production by Escherichia coli JM109pBB1. Biochem. Eng. J. 36: 268–275 (2007)

    Article  Google Scholar 

  9. Najafpour G, Younesi H, Ismail KSK. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresource Technol. 92: 251–260 (2004)

    Article  CAS  Google Scholar 

  10. Torre P, de Faveri D, Perego P, Ruzzi M, Barghini P, Gandolfi R, Converti A. Bioconversion of ferulate into vanillin by Escherichia coli strain JM109/pBB1 in an immobilized-cell reactor. Ann. Microbiol. 54: 517–527 (2004)

    CAS  Google Scholar 

  11. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377–397 (2004)

    Article  CAS  Google Scholar 

  12. Miller PR, Gittard SD, Edwards TL, Lopez DM, Xiao X, Wheeler DR, Monteiro- Riviere NA, Brozik SM, Polsky R, Narayan RJ. Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing. Biomicrofluidics 5: 013415–013428 (2011)

    Article  Google Scholar 

  13. Barghini P, Montebove F, Ruzzi M, Schiesser A. Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl. Microbiol. Biot. 49: 309–314 (1998)

    Article  CAS  Google Scholar 

  14. Islam R, Sparling R, Cicek N, Levin DB. Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum. Int. J. Mol. Sci. 16: 3116–3132 (2015)

    Article  CAS  Google Scholar 

  15. Priefert H, Rabenhorst J, Steinbüchel A. Biotechnological production of vanillin. Appl. Microbiol. Biot. 56: 296–314 (2001)

    Article  CAS  Google Scholar 

  16. Chen P, Li S, Yan L, Wang N, Yan X, Li H. Draft genome sequence of Bacillus subtilis type strain B7-S, which converts ferulic acid to vanillin. Genome Announc. 2: e00025–14 (2014)

    Google Scholar 

  17. Yan L, Chen P, Zhang S, Li S, Yan X, Wang N, Liang N, Li H. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Sci. Rep. 6: 34644 (2016)

    Article  CAS  Google Scholar 

  18. Derringer G, Suich R. Simultaneous Optimization of several response variables. J. Qual. Technol. 12: 214–219 (1980)

    Google Scholar 

  19. Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomblike morphotype. Appl. Environ. Microb. 81: 1813–1819 (2015)

    Article  Google Scholar 

  20. Daneshi A, Younesi H, Ghasempouri SM, Sharifzadeh M. Production of poly-3-hydroxybutyrate by Cupriavidus necator from corn syrup: Statistical modeling and optimization of biomass yield and volumetric productivity. J. Chem. Tech. Biot. 85: 1528–1539 (2010)

    CAS  Google Scholar 

  21. Gadhe A, Sonawane SS, Varma MN. Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int. J. Hydrogen. Energ. 38: 6607–6617 (2013)

    Article  CAS  Google Scholar 

  22. Khataee AR, Zarei M, Fathinia M, Jafari MK. Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach. Desalination 268: 126–133 (2011)

    Article  CAS  Google Scholar 

  23. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A. Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function. Appl. Surf. Sci. 258: 4402–4410 (2012)

    Article  CAS  Google Scholar 

  24. Shi XY, Li WW, Yu HQ. Optimization of H2 photo-fermentation from benzoate by Rhodopseudomonas palustris using a desirability function approach. Int. J. Hydrogen Energ. 39: 4244–4251 (2014)

    Article  CAS  Google Scholar 

  25. Aghamohammadi N, bin Abdul Aziz H, Isa MH, Zinatizadeh AA. Powdered activated carbon augmented activated sludge process for treatment of semiaerobic landfill leachate using response surface methodology. Bioresource Technol. 98: 3570–3578 (2007)

    Article  CAS  Google Scholar 

  26. Sreela Or C, Plangklang P, Imai T, Reungsang A. Co-digestion of food waste and sludge for hydrogen production by anaerobic mixed cultures: Statistical key factors optimization. Int. J. Hydrogen Energ. 36: 14227–14237 (2011)

    Article  CAS  Google Scholar 

  27. Nguyen HDN, Yang YS, Yuk HG. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT-Food Sci. Technol. 55: 383–388 (2014)

    Article  CAS  Google Scholar 

  28. Potumarthi R, Ch S, Jetty A. Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aeration and agitation regimes. Biochem. Eng. J. 34: 185–192 (2007)

    Article  CAS  Google Scholar 

  29. Sun ML, Liu SB, Qiao LP, Chen XL, Pang Xh, Shi M, Zhang XY, Qin QL, Zhou BC, Zhang YZ. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: Low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biot. 98: 7437–7445 (2014)

    Article  CAS  Google Scholar 

  30. Zeng W, Chen G, Wang Q, Zheng S, Shu L, Liang Z. Metabolic studies of temperature control strategy on poly (?-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28. Bioresource Technol. 155: 104–110 (2014)

    Article  CAS  Google Scholar 

  31. Park Y, Uehara H, Teruya R, Okabe M. Effect of culture temperature and dissolved oxygen concentration on expression of a-amylase gene in batch culture of spore-forming host, Bacillus subtilis 1A289. J. Ferment. Bioeng. 84: 53–58 (1997)

    Article  CAS  Google Scholar 

  32. Lemos M, Mergulhão F, Melo L, Simões M. The effect of shear stress on the formation and removal of Bacillus cereus biofilms. Food Bioprod. Process. 93: 242–248 (2015)

    Article  CAS  Google Scholar 

  33. Yánez Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N. Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol. Control 60: 280–289 (2012)

    Article  Google Scholar 

  34. Araújo JDP, Grande CA, Rodrigues AE. Structured packed bubble column reactor for continuous production of vanillin from Kraft lignin oxidation. Catal. Today 147: S330–S335 (2009)

    Article  Google Scholar 

  35. Vang ÓK, Corfitzen CB, Smith C, Albrechtsen H-J. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water. Water Res. 64: 309–320 (2014)

    Article  CAS  Google Scholar 

  36. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F. Novel strain of Bacillus licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann. Microbiol. 62: 553–558 (2012)

    Article  CAS  Google Scholar 

  37. Li X, Yang J, Li X, Gu W, Huang J, Zhang K-Q. The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from Vanilla root. Process Biochem. 43: 1132–1137 (2008)

    CAS  Google Scholar 

  38. Motedayen N, Ismail MBT, Nazarpour F. Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725. Afr. J. Biotechnol 12: 6618–6624 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Yan, L., Zhang, S. et al. Optimizing bioconversion of ferulic acid to vanillin by Bacillus subtilis in the stirred packed reactor using Box-Behnken design and desirability function. Food Sci Biotechnol 26, 143–152 (2017). https://doi.org/10.1007/s10068-017-0019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0019-0

Keywords

Navigation