Food Science and Biotechnology

, Volume 26, Issue 1, pp 97–103 | Cite as

Comparison of functional components in various sweet potato leaves and stalks

  • Meishan Li
  • Gwi Yeong Jang
  • Sang Hoon Lee
  • Min Young Kim
  • Se Gu Hwang
  • Hyun Man Sin
  • Hong Sig Kim
  • Junsoo Lee
  • Heon Sang Jeong


The functional components of leaves and stalks from 14 sweet potato cultivars were investigated by determining lutein, β-carotene, chlorophyll, tannin and phenolic acid contents. It was found that the contents of the functional components in different cultivars differ significantly (p<0.05). Lutein, β-carotene and total chlorophyll contents were high in leaves and ranged from 19.01–28.85, 35.21–52.01 and 440.9–712.2 mg/100 g, respectively. The tannin and total phenolic acid contents of sweet potato leaves ranged from 2,280–4,460 and 2,640.2–4,200.9 mg/100 g, respectively. Significant correlations have been observed among cultivar, lutein, β-carotene, chlorophyll, and other antioxidants. The leaves of Healthymi cultivar contained the highest level of lutein, β-carotene and total chlorophyll, and Geonpungmi cultivar contained the highest level of the other antioxidant, among the all cultivars examined. Sweet potato leaves and stalks contain abundant functional components that make them potentially useful as fresh vegetables or processed foods.


sweet potato leaves and stalks lutein β-carotene chlorophyll phenolic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovell-Benjamin AC. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 52: 1–59 (2007)CrossRefGoogle Scholar
  2. 2.
    Ishiguro K, Kumagai T, Kai Y, Nakazawa Y, Yamakawa O. Genetic resources and breeding of sweet potato in Japan. pp. 57–61. In: Exploring the complementarities of in situ and ex situ conservation strategies for Asian sweet potato genetic resources, proceeding of the 3rd international workshop of the Asian Network for sweet potato genetic resources. October 2–4, Bali, Indonesia. Asian Network for sweet potato genetic resources, Bali, Indonesia (2002)Google Scholar
  3. 3.
    Steed LE, Truong VD. Anthocyanin content, antioxidant activity, and selected physical properties of flow able purple-fleshed sweetpotato purees. J. Food Sci. 73: S215–S221 (2008)CrossRefGoogle Scholar
  4. 4.
    Van H, Faulks R, Granado HF, Hirschberg J, Olmedilla B, Sandmann G, Southon S, Stahl W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agr. 80: 880–912 (2000)CrossRefGoogle Scholar
  5. 5.
    Riso P, Brusamolino A, Scalfi L, Porrini M. Bioavailability of carotenoids from spinach and tomatoes. Nutr. Metab. Cardiovas. 14: 150–156 (2004)CrossRefGoogle Scholar
  6. 6.
    Amar I, Aserin A, Garti N. Solubilization patterns of lutein and lutein esters in food grade nonionic micro emulsions. J. Agr. Food Chem. 51: 4775–4781 (2003)CrossRefGoogle Scholar
  7. 7.
    Johnson EJ. A biological role of lutein. Food Rev. Int. 20: 1–16 (2004)CrossRefGoogle Scholar
  8. 8.
    MacDougall DB. Color measurement of food: Principles and practice. pp. 33–63. In: Color in Food: Improving Quality. MacDougall DB (ed). Woodhead Publishing Limited, Cambridge, UK (2002)CrossRefGoogle Scholar
  9. 9.
    Mortensen A. Carotenoids and other pigments as natural colorants. Pure Appl. Chem. 78: 1477–1491 (2006)CrossRefGoogle Scholar
  10. 10.
    Veloz-Garcia RA, Marin-Martinez R, Veloz-Rodriguez R, Munoz-Sanchez CI, Guevara-Olvera L, Miranda-Lopez R. Antimutagenic and antioxidant activities of cascalote (Caesalpinia cacalaco) phenolics. J. Sci. Food Agr. 84: 1632–1638 (2004)CrossRefGoogle Scholar
  11. 11.
    Hagerman AE, Riedl-Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 46: 1887–1892 (1998)CrossRefGoogle Scholar
  12. 12.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. Oxford University Press, Oxford, UK. pp. 22–85 (1999)Google Scholar
  13. 13.
    Zheng W, Clifford, MN. Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. Food Chem. 106: 147–152 (2008)CrossRefGoogle Scholar
  14. 14.
    Truong VD, McFeeters RF, Thompson RT, Dean LL, Shofran B. Phenolic acid content and composition in leaves and roots of common commercial sweet potato (Ipomea batatas L.) cultivars in the United States. J. Food Sci. 72: 343–349 (2007)CrossRefGoogle Scholar
  15. 15.
    Sondheimer E. On the distribution of caffeic acid and the chlorogenic acid isomers in plants. Arch. Biochem. Biophys. 74: 131–138 (1958)CrossRefGoogle Scholar
  16. 16.
    Wang XC, Chen L, Ma CL, Yao MZ, Yang YJ. Genotypic variation of betacarotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. J. Food Compos. Anal. 23: 9–14 (2010)CrossRefGoogle Scholar
  17. 17.
    Shin MK, Chang MK, Seo ES. Chemical properties on the quality of marketed roasting green teas. Korean J. Food Cook. Sci. 11: 356–361 (1995)Google Scholar
  18. 18.
    Duval B, Shetty K. The stimulation of phenolics and antioxidant activity in pea (Pisum Sativam) elicited by genetically transformed anise root extract. J. Food Biochem. 25: 361–377 (2001)CrossRefGoogle Scholar
  19. 19.
    Lee HS, Kim YN. Beta-carotene and lutein contents in green leafy vegetables. J. East Asian Soc. Diet. Life. 7: 175–179 (1997)Google Scholar
  20. 20.
    Murillo E, Melendez-Martinez AJ, Portugal F. Screening of vegetables and fruits from panama for rich sources of lutein and zeaxanthin. Food Chem. 122: 167–172 (2010)CrossRefGoogle Scholar
  21. 21.
    Ishida H, Suzuno H, Sugiyama N, Innami S, Tadokoro T, Maekawa A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir). Food Chem. 68: 359–367 (2000)CrossRefGoogle Scholar
  22. 22.
    Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhe R, Camp JV. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 108: 649–656 (2008)CrossRefGoogle Scholar
  23. 23.
    Kandlakunta B, Rajendran A, Thingnganing L. Carotene content of some common (cereals, pulses, vegetables, spices, and condiments) and unconventional sources of plant origin. Food Chem. 106: 85–89 (2008)CrossRefGoogle Scholar
  24. 24.
    Song ES, Jeon YS, Cheigh HS. Isolation of chlorophyll derivatives and ß-carotene from mustard leaf and their antioxidative activities on the lipid autoxidation. J. Korean Soc. Food Sci. Nutr. 30: 377–381 (2001)Google Scholar
  25. 25.
    Cho YS, Ha BS, Park SK, Chun SS. Contents of carotenoids and chlorophylls in dolsan leaf mustard (Brassica juncea). J. Korean Soc. Food Cult. 8: 153–157 (1993)Google Scholar
  26. 26.
    Chen XX, Cai BQ, Huang MJ, Zhang FD, Kong XX. Extraction and stability of chlorophyll from sweet potato leaves. Ghuangzhou Chem. Ind. 41: 72–75 (2013)Google Scholar
  27. 27.
    Peng Y, Xu YQ, Duan DF, Mao LC. Postharvest quality and physiological behavior of sweet potato (Ipomoea batatas Lam.) leaf stalks under three temperatures. Agr. Sci. China. 8: 244–248 (2009)CrossRefGoogle Scholar
  28. 28.
    Van Acker SABE, Plemper Van Balen GP, van den Berg DJ, Bast A, van der Vijgh WJF. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol. 56: 935–943 (1998)CrossRefGoogle Scholar
  29. 29.
    Hagerman AE, Rice ME, Ritchard NT. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (48) catechin. J. Agr. Food Chem. 46: 2590–2595 (1998)CrossRefGoogle Scholar
  30. 30.
    Park YS, Lee MK, Ryu HH, Heo BG. Content analysis of chungtaejeon tea and green tea produced in jangheung district. Korean J. Commun. Living Sci. 19: 55–61 (2008)Google Scholar
  31. 31.
    Almazan AM, Begum F, Johnson C. Nutritional quality of sweet potato greens from greenhouse plants. J. Food Compos. Anal. 10: 246–253 (1997)CrossRefGoogle Scholar
  32. 32.
    Liao WC, Lai YC, Yuan MC, Hsu YL, Chan CF. Antioxidative activity of water extract of sweet potato leaves in Taiwan. Food Chem. 127: 1224–1228 (2001)CrossRefGoogle Scholar
  33. 33.
    Islam MS, Yoshimoto M, Yahara S, Yamakawa O. Identification and characterization of foliar polyphenolic composition in sweetpotato genotypes. J. Agr. Food Chem. 50: 3718–3722 (2002)CrossRefGoogle Scholar
  34. 34.
    Islam S. Sweetpotato (Ipomeabatatas L.) leaf: Its potential effect on human health and nutrition. J. Food Sci. 71: R13–R121 (2006)CrossRefGoogle Scholar
  35. 35.
    Jung JK, Lee SU, Kozukue N, Levin CE, Friedman M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food Compos. Anal. 24: 29–37 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Meishan Li
    • 1
  • Gwi Yeong Jang
    • 1
  • Sang Hoon Lee
    • 1
  • Min Young Kim
    • 1
  • Se Gu Hwang
    • 2
  • Hyun Man Sin
    • 2
  • Hong Sig Kim
    • 3
  • Junsoo Lee
    • 1
  • Heon Sang Jeong
    • 1
  1. 1.Department of Food Science and BiotechnologyChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Department of Crop ScienceChungbuk Agricultural Research and Extension ServiceOchang, ChungbukKorea
  3. 3.Department of Crop ScienceChungbuk National UniversityCheongju, ChungbukKorea

Personalised recommendations