Food Science and Biotechnology

, Volume 26, Issue 1, pp 55–62 | Cite as

Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis

  • Junqiao Wang
  • Shaoping Nie
  • Lijiao Kan
  • Haihong Chen
  • Steve W. Cui
  • Aled O. Phillips
  • Glyn O. Phillips
  • Mingyong Xie


Four polysaccharides (named as P1, P2, and P3 from three natural Cordyceps sinensis and P4 from cultured C. sinensis) were obtained by hot-water extraction and ethanol precipitation and their structural characteristics as well as antioxidant potentials were compared. Results revealed that the backbone of P1, P2, and P3 comprised α-1,4-glucose, with a branching point mainly at position 6 and terminating at glucose. On the other hand, the structure of P4 was highly complex, mainly comprising glucose, galactose, and mannose, with 1,4-glucose and 1,4-galactose as the main chain. For in vitro antioxidant assays, all the four polysaccharides showed similar scavenging capacity against DPPH and hydroxyl radicals, whereas P1 had a relatively low ferric reducing ability, possibly related to a combination of factors such as the phenolic compounds and amino acids that conjugated in polysaccharides.


natural/cultured Cordyceps sinensis polysaccharide structure antioxidant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiang Y, Yao Y. Current understanding of molecular systematics of Cordyceps. J. Fungal Res. 2: 58–67 (2004)Google Scholar
  2. 2.
    Sung JM, Lee HK, Yang KJ. Classification of Cordyceps spp. by morphological characteristics and protein banding pattern. Korean J. Mycol. 23: 92–104 (1995)Google Scholar
  3. 3.
    Li SP, Yang FQ, Tsim KWK. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharmaceut. Biomed. 41: 1571–1584 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen PX, Wang SN, Nie SP, Marcone M. Properties of Cordyceps sinensis: A review. J. Funct. Foods 5: 550–569 (2013)CrossRefGoogle Scholar
  5. 5.
    Zhu JS, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis Part I. J. Altern. Complem. Med. 4: 289–303 (1998)CrossRefGoogle Scholar
  6. 6.
    Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis Part II. J. Altern. Complem. Med. 4: 429–457 (1998)CrossRefGoogle Scholar
  7. 7.
    Liang ZQ. Current situation and ponderation of Cordyceps Fr. research and exploitation in China. Acta Edulis Fungi. 2: 53–62 (2001)Google Scholar
  8. 8.
    Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods 6: 33–47 (2014)CrossRefGoogle Scholar
  9. 9.
    Nie SP, Cui SW, Xie MY, Phillips AO, Phillips GO. Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioact. Carbohyd. Dietary Fibre. 1: 38–52 (2013)CrossRefGoogle Scholar
  10. 10.
    Tao YZ, Zhang LN, Cheung PC. Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohyd. Res. 341: 2261–2269 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhang LN, Li XL, Xu XJ, Zeng FB. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohyd. Res. 340: 1515–1521 (2005)CrossRefGoogle Scholar
  12. 12.
    Wang JQ, Kan LJ, Nie SP, Chen HH, Cui SW, Phillips AO, Phillips GO, Li YJ, Xie MY. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT-Food Sci. Technol. 63: 2–7 (2015)CrossRefGoogle Scholar
  13. 13.
    Dai J, Liang L, Yin H. Analysis of monosaccharde compositions in polysaccharides from D. salina by high-performance anion-exchange chromatography. Food Ferment. Ind. 32: 131–135 (2006)Google Scholar
  14. 14.
    Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohyd. Res. 131: 209–217 (1984)CrossRefGoogle Scholar
  15. 15.
    Singleton V, Orthofer R, Lamuela-Raventos R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folinciocalteu reagent. Method. Enzymol. 299: 152–178 (1999)CrossRefGoogle Scholar
  16. 16.
    Mao GH, Zou Y, Feng WW, Wang W, Zhao T, Ye CW, Zhu Y, Wu XS, Yang LQ, Wu XY. Extraction, preliminary characterization and antioxidant activity of Seenriched Maitake polysaccharide. Carbohyd. Polym. 101: 213–219 (2014)CrossRefGoogle Scholar
  17. 17.
    Gao CJ, Wang YH, Wang CY, Wang ZY. Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium. Carbohyd. Polym. 92: 2187–2192 (2013)CrossRefGoogle Scholar
  18. 18.
    Benzie IF, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)CrossRefGoogle Scholar
  19. 19.
    Fogarasi AL, Kun S, Tankó G, Stefanovits-Bányai É, Hegyesné-Vecseri B. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 167: 1–6 (2015)CrossRefGoogle Scholar
  20. 20.
    Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 38: 76–87 (2012)CrossRefGoogle Scholar
  21. 21.
    Niu YG, Shang PP, Chen L, Zhang H, Gong L, Zhang XW, Yu WJ, Xu YH, Wang Q, Yu LL. Characterization of a novel alkali-soluble heteropolysaccharide from tetraploid Gynostemma pentaphyllum makino and its potential antiinflammatory and antioxidant properties. J. Agr. Food Chem. 62: 3783–3790 (2014)CrossRefGoogle Scholar
  22. 22.
    Chen H, Zhang M, Qu Z, Xie B. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem. 106: 559–563 (2008)CrossRefGoogle Scholar
  23. 23.
    Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid. Med. Cell Longev. Article ID 5692852 (2016)Google Scholar
  24. 24.
    Zhang H, Cui SW, Nie SP, Chen Y, Wang YX, Xie MY. Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum. Bioact. Carbohyd. Dietary Fibre. 7: 9–18 (2016)CrossRefGoogle Scholar
  25. 25.
    Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. 48: 430–441 (2008)CrossRefGoogle Scholar
  26. 26.
    Minelli A, Bellezza I, Grottelli S, Galli F. Focus on cyclo (His-Pro): History and perspectives as antioxidant peptide. Amino Acids 35: 283–289 (2008)CrossRefGoogle Scholar
  27. 27.
    Pérez RA, Iglesias MT, Pueyo E, González M, de Lorenzo C. Amino acid composition and antioxidant capacity of Spanish honeys. J. Agr. Food Chem. 55: 360–365 (2007)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Junqiao Wang
    • 1
  • Shaoping Nie
    • 1
  • Lijiao Kan
    • 1
  • Haihong Chen
    • 1
  • Steve W. Cui
    • 1
    • 2
  • Aled O. Phillips
    • 3
  • Glyn O. Phillips
    • 4
  • Mingyong Xie
    • 1
  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, Jiangxi ProvinceChina
  2. 2.Agriculture and Agri-Food CanadaGuelph Food Research CentreGuelphCanada
  3. 3.School of MedicineUniversity of CardiffWalesUK
  4. 4.Phillips Hydrocolloids Research CentreGlyndwr UniversityWrexhamUK

Personalised recommendations