NFKB1 promoter –94 insertion/deletion ATTG polymorphism (rs28362491) is associated with severity and disease progression of rheumatoid arthritis through interleukin-6 levels modulation in Egyptian patients

Abstract

Objective

Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder, which can cause progressive and functional disability. Previous data suggests that some inflammatory cytokines are dysregulated in patients with RA. Polymorphisms in the NFKB1 gene were studied in different populations with RA. Specific studies showed that the NFKB1 promoter –94ins/delATTG (rs28362491) polymorphism appears to be correlated with alterations in the IL-6 expression and may lead to disease development. We aimed to evaluate the association between the NFKB1 –94ins/delATTG polymorphism and biochemical, and clinical markers for severity of RA in Egyptian patients.

Methods

Study subjects included 196 RA patients from the Egyptian population. NFKB1 –94ins/delATTG polymorphism was genotyped by real-time PCR using the TaqMan assay. Concentrations of plasma IL-6 were assessed using the ELISA method.

Results

The frequencies of (del/del + ins/del) genotype in cases with erosive arthritis were significantly increased as compared to cases with non-erosive arthritis (63.0% vs. 47.7%, OR = 1.86, 95% CI: 1.05–3.30, p: 0.043). Carriers of del allele had high activity and severity markers compared with those of ins/ins genotype. The del allele was significantly associated with higher IL-6 levels in a dose-dependent manner. Plasma levels of IL-6 were significantly higher in the del/del (41.4 ± 16.2 pg/ml) and ins/del (19.1 ± 12.4 pg/ml) genotype when compared with the ins/ins genotype (11.4 ± 4.21 pg/ml). In a multivariate analysis of variance, including confounding factors associated with higher IL-6 levels (RF, disease duration, and DAS28), the NFKB1 –94ins/delATTG polymorphism retained its role. Logistic regression analyses revealed that high IL-6 plasma levels independently associated with an increased risk of presenting erosive RA, while –94ins/delATTG polymorphism has no direct association with the progression of erosive arthritis.

Conclusion

Our data indicate that the NFKB1 –94ins/delATTG polymorphism contributes to the severity and progression of RA through IL-6 levels modulation in Egyptian patients.

Key Points
• Carriers of del allele had high activity and severity markers compared with those of ins/ins genotype.
• In RA patients, the del allele was significantly associated with higher IL-6 levels in a dose-dependent manner.
• IL-6 plasma levels are independently associated with an increased risk of presenting erosive arthritis.
• The NFKB1 –94ins/delATTG polymorphism contributes to the severity and progression of RA through IL-6 levels modulation in Egyptian patients.

This is a preview of subscription content, access via your institution.

Abbreviations

RA:

Rheumatoid arthritis

NF-κB:

Nuclear factor-κB

NFKB1:

Nuclear factor-kappa B1

IL-6:

Interleukin-6

PCR:

Polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

SNP:

Single-nucleotide polymorphism

DAS28:

Disease activity score in 28 joints

VAS:

Visual analogue scale

HAQ:

Health Assessment Questionnaire

Anti-CCP:

Anti-cyclic citrullinated peptide

RF:

Rheumatoid factor

ins:

Insertion

del:

Deletion

References

  1. 1.

    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219. https://doi.org/10.1056/NEJMra1004965

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, Aslani S (2019) Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 234(7):10018–10031. https://doi.org/10.1002/jcp.27860

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Bagheri-Hosseinabadi Z, Imani D, Yousefi H, Abbasifard M (2020) Vitamin D receptor (VDR) gene polymorphism and risk of rheumatoid arthritis (RA): systematic review and meta-analysis. Clin Rheumatol 39(12):3555–3569. https://doi.org/10.1007/s10067-020-05143-y

    Article  PubMed  Google Scholar 

  4. 4.

    Sangha O (2000) Epidemiology of rheumatic diseases. Rheumatology (Oxford, England) 39 Suppl 2:3-12. doi:https://doi.org/10.1093/rheumatology/39.suppl_2.3

  5. 5.

    Tobón GJ, Youinou P, Saraux A (2010) The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. Autoimmun Rev 9(5):A288–A292. https://doi.org/10.1016/j.autrev.2009.11.019

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Conigliaro P, Triggianese P, De Martino E, Fonti GL, Chimenti MS, Sunzini F, Viola A, Canofari C, Perricone R (2019) Challenges in the treatment of rheumatoid arthritis. Autoimmun Rev 18(7):706–713. https://doi.org/10.1016/j.autrev.2019.05.007

    Article  PubMed  Google Scholar 

  7. 7.

    Luxembourger C, Ruyssen-Witrand A, Ladhari C, Rittore C, Degboe Y, Maillefert JF, Gaudin P, Marotte H, Wendling D, Jorgensen C, Cantagrel A, Constantin A, Nigon D, Touitou I, Gottenberg JE, Pers YM (2019) A single nucleotide polymorphism of IL6-receptor is associated with response to tocilizumab in rheumatoid arthritis patients. The pharmacogenomics journal 19(4):368–374. https://doi.org/10.1038/s41397-019-0072-6

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Gomes da Silva IIF, Lima CAD, Monteiro MLA, Barboza D, Rushansky E, Mariano M, Sandrin-Garcia P, de Souza PRE, Maia MMD (2020) IL1β, IL18, NFKB1 and IFNG gene interactions are associated with severity of rheumatoid arthritis: a pilot study. Autoimmunity 53(2):95–101. https://doi.org/10.1080/08916934.2019.1710831

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhang C, Jiao S, Li T, Zhao L, Chen H (2020) Relationship between polymorphisms in -572G/C interleukin 6 promoter gene polymorphisms (rs1800796) and risk of rheumatoid arthritis: a meta-analysis. Int J Rheum Dis 23(1):47–54. https://doi.org/10.1111/1756-185x.13729

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Solus JF, Chung CP, Oeser A, Li C, Rho YH, Bradley KM, Kawai VK, Smith JR, Stein CM (2015) Genetics of serum concentration of IL-6 and TNFα in systemic lupus erythematosus and rheumatoid arthritis: a candidate gene analysis. Clin Rheumatol 34(8):1375–1382. https://doi.org/10.1007/s10067-015-2881-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mateen S, Zafar A, Moin S, Khan AQ, Zubair S (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171. https://doi.org/10.1016/j.cca.2016.02.010

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Shehu S, Kurya AU, Aliyu U, Sharma DC (2020) Role of inflammatory cytokines in the pathogenesis of rheumatoid arthritis and novel therapeutic targets. Asian Journal of Immunology 4(2):37–46

    Google Scholar 

  13. 13.

    Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295. https://doi.org/10.1101/cshperspect.a016295

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204–7218. https://doi.org/10.18632/oncotarget.23208

    Article  PubMed  Google Scholar 

  15. 15.

    Kany S, Vollrath JT, Relja B (2019) Cytokines in inflammatory disease. Int J Mol Sci 20(23). https://doi.org/10.3390/ijms20236008

  16. 16.

    Schinnerling K, Aguillón JC, Catalán D, Soto L (2017) The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis. Clin Exp Immunol 189(1):12–20. https://doi.org/10.1111/cei.12966

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal transduction and targeted therapy 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Makarov SS (2001) NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res 3(4):200–206. https://doi.org/10.1186/ar300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pereira SG, Oakley F (2008) Nuclear factor-kappaB1: regulation and function. Int J Biochem Cell Biol 40(8):1425–1430. https://doi.org/10.1016/j.biocel.2007.05.004

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, Bailey-Wilson JE, Silverberg MS, Duerr RH, Cho JH, Gregersen PK, Wu Y, Achkar JP, Dassopoulos T, Mezey E, Bayless TM, Nouvet FJ, Brant SR (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13(1):35–45. https://doi.org/10.1093/hmg/ddh008

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Orozco G, Sánchez E, Collado MD, López-Nevot MA, Paco L, García A, Jiménez-Alonso J, Martín J (2005) Analysis of the functional NFKB1 promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens 65(2):183–186. https://doi.org/10.1111/j.1399-0039.2005.00341.x

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cartwright T, Perkins ND, C LW (2016) NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J 283 (10):1812–1822. doi:https://doi.org/10.1111/febs.13627

  23. 23.

    Hamadou I, Garritano S, Romanel A, Naimi D, Hammada T, Demichelis F (2020) Inherited variant in NFκB-1 promoter is associated with increased risk of IBD in an Algerian population and modulates SOX9 binding. Cancer reports (Hoboken, NJ) 3(3):e1240. https://doi.org/10.1002/cnr2.1240

    CAS  Article  Google Scholar 

  24. 24.

    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovský J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis and rheumatism 62(9):2569–2581. https://doi.org/10.1002/art.27584

    Article  Google Scholar 

  25. 25.

    Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–48. https://doi.org/10.1002/art.1780380107

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Maska L, Anderson J, Michaud K (2011) Measures of functional status and quality of life in rheumatoid arthritis: Health Assessment Questionnaire Disability Index (HAQ), Modified Health Assessment Questionnaire (MHAQ), Multidimensional Health Assessment Questionnaire (MDHAQ), Health Assessment Questionnaire II (HAQ-II), Improved Health Assessment Questionnaire (Improved HAQ), and Rheumatoid Arthritis Quality of Life (RAQoL). Arthritis care & research 63(Suppl 11):S4–S13. https://doi.org/10.1002/acr.20620

  27. 27.

    van der Heijde D (2000) How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol 27(1):261–263

    PubMed  Google Scholar 

  28. 28.

    Swierkot J, Nowak B, Czarny A, Zaczyńska E, Sokolik R, Madej M, Korman L, Sebastian A, Wojtala P, Lubiński Ł, Wiland P (2016) The activity of JAK/STAT and NF-KB in patients with rheumatoid arthritis. Advances in Clinical and Experimental Medicine 25:709–717. https://doi.org/10.17219/acem/61034

  29. 29.

    Bogunia-Kubik K, Wysoczańska B, Piątek D, Iwaszko M, Ciechomska M, Świerkot J (2016) Significance of polymorphism and expression of miR-146a and NFkB1 genetic variants in patients with rheumatoid arthritis. Arch Immunol Ther Exp 64(Suppl 1):131–136. https://doi.org/10.1007/s00005-016-0443-5

    CAS  Article  Google Scholar 

  30. 30.

    Gębura K, Świerkot J, Wysoczańska B, Korman L, Nowak B, Wiland P, Bogunia-Kubik K (2017) Polymorphisms within genes involved in regulation of the NF-κB pathway in patients with rheumatoid arthritis. Int J Mol Sci 18(7). https://doi.org/10.3390/ijms18071432

  31. 31.

    López-Mejías R, García-Bermúdez M, González-Juanatey C, Castañeda S, Miranda-Filloy JA, Gómez-Vaquero C, Fernández-Gutiérrez B, Balsa A, Pascual-Salcedo D, Blanco R, González-Álvaro I, Llorca J, Martín J, González-Gay MA (2012) NFKB1-94ATTG ins/del polymorphism (rs28362491) is associated with cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis 224(2):426–429. https://doi.org/10.1016/j.atherosclerosis.2012.06.008

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Tsuchida AI, Beekhuizen M, Rutgers M, van Osch GJ, Bekkers JE, Bot AG, Geurts B, Dhert WJ, Saris DB, Creemers LB (2012) Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model. Arthritis research & therapy 14(6):R262. https://doi.org/10.1186/ar4107

    CAS  Article  Google Scholar 

  33. 33.

    Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693. https://doi.org/10.1002/art.23758

    Article  PubMed  Google Scholar 

  34. 34.

    Yoshida Y, Tanaka T (2014) Interleukin 6 and rheumatoid arthritis. Biomed Res Int 2014:698313. https://doi.org/10.1155/2014/698313

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Houssiau FA, Devogelaer JP, Van Damme J, de Deuxchaisnes CN, Van Snick J (1988) Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 31(6):784–788. https://doi.org/10.1002/art.1780310614

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Dayer JM, Choy E (2010) Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford, England) 49(1):15–24. https://doi.org/10.1093/rheumatology/kep329

    CAS  Article  Google Scholar 

  37. 37.

    Manicourt DH, Triki R, Fukuda K, Devogelaer JP, Nagant de Deuxchaisnes C, Thonar EJ (1993) Levels of circulating tumor necrosis factor alpha and interleukin-6 in patients with rheumatoid arthritis. Relationship to serum levels of hyaluronan and antigenic keratan sulfate. Arthritis Rheum 36(4):490–499. https://doi.org/10.1002/art.1780360409

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Koc A, Batar B, Celik O, Onaran I, Tasan E, Sultuybek GK (2014) Polymorphism of the NFKB1 affects the serum inflammatory levels of IL-6 in Hashimoto thyroiditis in a Turkish population. Immunobiology 219(7):531–536. https://doi.org/10.1016/j.imbio.2014.03.009

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Giachelia M, Voso MT, Tisi MC, Martini M, Bozzoli V, Massini G, D’Aló F, Larocca LM, Leone G, Hohaus S (2012) Interleukin-6 plasma levels are modulated by a polymorphism in the NF-κB1 gene and are associated with outcome following rituximab-combined chemotherapy in diffuse large B-cell non-Hodgkin lymphoma. Leukemia & lymphoma 53(3):411–416. https://doi.org/10.3109/10428194.2011.621566

    CAS  Article  Google Scholar 

  40. 40.

    Lai HM, Li XM, Yang YN, Ma YT, Xu R, Pan S, Zhai H, Liu F, Chen BD, Zhao Q (2015) Genetic variation in NFKB1 and NFKBIA and susceptibility to coronary artery disease in a Chinese Uygur population. PLoS One 10(6):e0129144. https://doi.org/10.1371/journal.pone.0129144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kondo Y, Kaneko Y, Sugiura H, Matsumoto S, Nishina N, Kuwana M, Jinzaki M, Takeuchi T (2017) Pre-treatment interleukin-6 levels strongly affect bone erosion progression and repair detected by magnetic resonance imaging in rheumatoid arthritis patients. Rheumatology (Oxford, England) 56(7):1089–1094. https://doi.org/10.1093/rheumatology/kex046

    CAS  Article  Google Scholar 

  42. 42.

    Baillet A, Gossec L, Paternotte S, Etcheto A, Combe B, Meyer O, Mariette X, Gottenberg JE, Dougados M (2015) Evaluation of serum interleukin-6 level as a surrogate marker of synovial inflammation and as a factor of structural progression in early rheumatoid arthritis: results from a French national multicenter cohort. Arthritis care & research 67(7):905–912. https://doi.org/10.1002/acr.22513

    CAS  Article  Google Scholar 

  43. 43.

    Wu Q, Zhou X, Huang D, Ji Y, Kang F (2017) IL-6 enhances osteocyte-mediated Osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 41(4):1360–1369. https://doi.org/10.1159/000465455

    CAS  Article  Google Scholar 

  44. 44.

    de Brito RS, Baldo DC, Andrade LEC (2019) Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Advances in rheumatology (London, England) 59(1):2. https://doi.org/10.1186/s42358-018-0042-8

    Article  Google Scholar 

  45. 45.

    Bukhari M, Lunt M, Harrison BJ, Scott DG, Symmons DP, Silman AJ (2002) Rheumatoid factor is the major predictor of increasing severity of radiographic erosions in rheumatoid arthritis: results from the Norfolk Arthritis Register Study, a large inception cohort. Arthritis Rheum 46(4):906–912. https://doi.org/10.1002/art.10167

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samy Y. Elkhawaga.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elkhawaga, S.Y., Gomaa, M.H., Elsayed, M.M. et al. NFKB1 promoter –94 insertion/deletion ATTG polymorphism (rs28362491) is associated with severity and disease progression of rheumatoid arthritis through interleukin-6 levels modulation in Egyptian patients. Clin Rheumatol (2021). https://doi.org/10.1007/s10067-021-05584-z

Download citation

Keywords

  • Bone erosion
  • Egyptian
  • Interleukin-6
  • NFKB1 –94ins/delATTG
  • Polymorphism
  • Rheumatoid arthritis