Patients with systemic lupus erythematosus show increased proportions of CD19+CD20 B cells and secretion of related autoantibodies

Abstract

Background

At present, anti-CD20 monoclonal antibody treatments targeting systemic lupus erythematosus (SLE) are complex, variable, and often have disappointing outcomes. High levels of programmed cell death-1 (PD-1) and its ligands (PD-L1, PD-L2) or CD80/CD86 on B cell surfaces are markers of increased B cell activity. However, their expression levels on CD19+CD20+/− B cells and their clinical significance for SLE dynamics have not been carefully investigated.

Methods

Flow cytometry was used to detect the expression levels of PD-1, PD-L1, PD-L2, CD80, and CD86 on CD19+CD20+/− B cells in peripheral blood from SLE patients and healthy controls (HCs). The amount of anti-dsDNA and immunoglobin G (IgG) secreted by CD19+CD20+/− B cells was measured by enzyme-linked immunosorbent assay.

Results

CD19+CD20 B cell frequency was significantly higher in SLE patients than in HCs (P < 0.001), and was positively correlated with disease activity. In SLE patients, frequencies of PD-1, PD-L1, PD-L2, and CD86 on CD19+CD20 B cells were significantly higher than CD19+CD20+ B cells (P ≤ 0.002) and were significantly correlated with individual laboratory and clinically based parameters (P < 0.05). In vitro tests, we found that the levels of anti-dsDNA and IgG secreted by CD19+CD20 B cells from patients with SLE were significantly higher than the HC group (P < 0.05).

Conclusions

We found abnormal frequency of CD19+CD20 B cells and increased expression of surface markers on these cells from SLE patients. And the CD19+CD20 B cells had the ability to proliferate and secrete anti-dsDNA and IgG. Additionally, our results suggested that CD19+CD20 B cells from SLE patients may be the activated B cells and caused poor efficacy of rituximab.

Key Points
• CD19+CD20B cell frequencies were significantly higher in SLE patients.
• Frequencies of PD-1 and its ligands on CD19+CD20B cells increased significantly in SLE patients.
• CD19+CD20B cells in SLE patients had the ability to secrete anti-dsDNA and IgG.
• CD19+CD20B cells in SLE patients may be the activated B cells and caused poor efficacy of rituximab.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

C3:

complement 3

C4:

complement 4

CFSE:

carboxy fluorescence in succinimidyl ester

CHrom:

Chromatin

CR:

creatinine

DI:

division Index

DN:

double negative

dsDNA:

double-stranded DNA

ELISA:

enzyme-linked immunosorbent assay

ESR:

erythrocyte sedimentation rate

IgM:

immunoglobulin M

IgA:

immunoglobulin A

IgG:

immunoglobulin G

LN:

lupus nephritis

N:

naïve

NPSLE:

neuropsychiatric systemic lupus erythematosus

NSM:

non-switched memory

PBS:

phosphate-buffered saline

PBMCs:

peripheral blood mononuclear cells

PC:

plasmablast cells

PD-1:

programmed death 1

PD-L1:

programmed death ligand 1

PD-L2:

programmed death ligand 2

PI:

proliferation Index

PLT:

platelet

RNP:

ribonucleoprotein

RNP-A:

ribonucleoprotein-A

Sm:

smith

SNK:

Student-Newman-Keuls

SPSS:

Statistical Package for Social Sciences

SLE:

systemic lupus erythematosus

SLEDAI:

systemic lupus erythematosus disease activity index

SM:

switched memory

Tfh:

follicular helper T-cells

References

  1. 1.

    Sang A, Zheng YY, Morel L (2014) Contributions of B cells to lupus pathogenesis. Mol Immunol 62(2):329–338. https://doi.org/10.1016/j.molimm.2013.11.013

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Moulton VR, Tsokos GC (2015) T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 125(6):2220–2227. https://doi.org/10.1172/JCI78087

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Santos MAO, Lima MM (2017) CD20 role in pathophysiology of Hodgkin’s disease. Rev Assoc Med Bras 63(9):810–813. https://doi.org/10.1590/1806-9282.63.09.810

    Article  PubMed  Google Scholar 

  4. 4.

    Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. New l J Med 366(21):2008–2016. https://doi.org/10.1056/NEJMct1114348

    CAS  Article  Google Scholar 

  5. 5.

    Liang Y, Tedder TF (2001) Identification of a CD20-, FcepsilonRIbeta-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72(2):119–127. https://doi.org/10.1006/geno.2000.6472

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, Utset TO, Gordon C, Isenberg DA, Hsieh HJ, Zhang D, Brunetta PG (2010) Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 62(1):222–233. https://doi.org/10.1002/art.27233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G, LUNAR Investigator Group (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 64(4):1215–1226. https://doi.org/10.1002/art.34359

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. https://doi.org/10.1038/nri3405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    CAS  Article  Google Scholar 

  10. 10.

    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268. https://doi.org/10.1038/85330

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369. https://doi.org/10.1038/70932

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Nurieva RI, Liu X, Dong C (2009) Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev 229(1):88–100. https://doi.org/10.1111/j.1600-065X.2009.00769.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871. https://doi.org/10.1073/pnas.231486598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    CAS  Article  Google Scholar 

  15. 15.

    Thibult ML, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L, Chetaille B, Olive D (2013) PD-1 is a novel regulator of human B-cell activation. Int Immunol 25(2):129–137. https://doi.org/10.1093/intimm/dxs098

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Jia XY, Zhu QQ, Wang YY, Lu Y, Li ZJ, Li BQ, Tang J, Wang HT, Song CW, Xie CH, Chen LJ (2019) The role and clinical significance of programmed cell death-ligand 1 expressed on CD19B-cells and subsets in systemic lupus erythematosus. Clin Immunol 198:89–99. https://doi.org/10.1016/j.clim.2018.11.015

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    McKay JT, Haro MA, Daly CA, Yammani RD, Pang B, Swords WE et al (2017) PD-L2 regulates B-1 cell antibody production against phosphorylcholine through an IL-5-dependent mechanism. J Immunol 199(6):2020–2029. https://doi.org/10.4049/jimmunol.1700555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2009) Association of programmed cell death 1 polymorphism and systemic lupus erythematosus: a meta-analysis. Lupus 18(1):9–15. https://doi.org/10.1177/0961203308093923

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK (1997) Analysis of CD80 and CD86 expression on peripheral blood B-lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol 83(3):199–204

    CAS  Article  Google Scholar 

  20. 20.

    Dolff S, Wilde B, Patschan S, Dürig J, Specker C, Philipp T, Kribben A, Witzke O (2007) Peripheral circulating activated B-cell populations are associated with nephritis and disease activity in patients with systemic lupus erythematosus. Scand J Immunol 66(5):584–590. https://doi.org/10.1111/j.1365-3083.2007.02008.x

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35(6):630–640

    CAS  Article  Google Scholar 

  22. 22.

    Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR et al (2012) Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64(8):2677–2686. https://doi.org/10.1002/art.34473

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Nagy G, Koncz A, Perl A (2005) T- and B-cell abnormalities in systemic lupus erythematosus. Crit Rev Immunol 25(2):123–140

    CAS  Article  Google Scholar 

  24. 24.

    Liao J, Chang C, Wu H, Lu Q (2015) Cell-based therapies for systemic lupus erythematosus. Autoimmun Rev 14(1):43–48. https://doi.org/10.1016/j.autrev.2014.10.001

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Alshaiki F, Obaid E, Almuallim A, Taha R, El-Haddad H, Almoallim H (2018) Outcomes of rituximab therapy in refractory lupus: a meta-analysis. Eur J Rheumatol 5(2):118–126. https://doi.org/10.5152/eurjrheum.2018.17096

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O (2018) B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord 11:1756286418761697. https://doi.org/10.1177/1756286418761697

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Mei HE, Schmidt S, Dörner T (2012) Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 14(Suppl. 5):S1. https://doi.org/10.1186/ar3909

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, Sloand JA, Rosenblatt J, Sanz I (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50(8):2580–2589. https://doi.org/10.1002/art.20430

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC (2006) Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum 54(2):613–620. https://doi.org/10.1002/art.21617

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Albert D, Dunham J, Khan S, Stansberry J, Kolasinski S, Tsai D, Pullman-Mooar S, Barnack F, Striebich C, Looney RJ, Prak ETL, Kimberly R, Zhang Y, Eisenberg R (2008) Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus [J]. Ann Rheum Dis 67(12):1724–1731. https://doi.org/10.1136/ard.2007.083162

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Häusler D, Häusser-Kinzel S, Feldmann L, Torke S, Lepennetier G, Bernard CCA, Zamvil SS, Brück W, Lehmann-Horn K, Weber MS (2018) Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc Natl Acad Sci U S A 115(39):9773–9778. https://doi.org/10.1073/pnas.1810470115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Huck C, Leppert D, Wegert V, Schmid C, Dunn R, Weckbecker G, Smith PA (2019) Low-dose subcutaneous anti-CD20 treatment depletes disease relevant B cell subsets and attenuates neuroinflammation. J NeuroImmune Pharmacol 14(4):709–719. https://doi.org/10.1007/s11481-019-09872-z

    Article  PubMed  Google Scholar 

  33. 33.

    Curran CS, Gupta S, Sanz I, Sharon E (2019) PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun 97:1–9. https://doi.org/10.1016/j.jaut.2018.10.025

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Shindo Y, Yoshimura K, Kuramasu A, Watanabe Y, Ito H, Kondo T, Oga A, Ito H, Yoshino S, Hazama S, Tamada K, Yagita H, Oka M (2015) Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor. Anticancer Res 35(1):129–136

    CAS  PubMed  Google Scholar 

  35. 35.

    Kamburova EG, Koenen HJ, Boon L, Hilbrands LB, Joosten I (2012) In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells. Am J Transplant 12(2):341–350. https://doi.org/10.1111/j.1600-6143.2011.03833.x

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. New Engl J Med 349(16):1526–1533. https://doi.org/10.1056/NEJMoa021933

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Chuanwang Song, Hongtao Wang, Jie Tang for their direction and supervision during the experiment.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Research was supported by funding from the Anhui Provincial Natural Science Foundation (1608085MH215), the Key Project of the Natural Science Foundation Universities Anhui Province (KJ2019A0319, KJ2016A475), the Natural Science Foundation of Universities in Anhui Province (KJ2013B139), the Postgraduate Science and Technology Innovation Project of Bengbu Medical College in Anhui Province (Byycx1824), and the Undergraduate Training Programs for Innovation and Entrepreneurship in Anhui Province (201,810,367,017, and 201,810,367,056).

Author information

Affiliations

Authors

Contributions

CX, YW conceived and designed the work. MW, ZC contribute to collect peripheral blood samples of subjects. QZ, YL and LZ performed the experiments. QZ, JS, JL analyzed data and statistical analysis. CX and QZ drafted the manuscript. BL, CX and ZL critically revised the manuscript for important intellectual content.

Corresponding authors

Correspondence to Yuanyuan Wang or Changhao Xie.

Ethics declarations

Ethics approval and consent to participate

All participants provided informed written consent. This study was approved by the institutional review board of the First Affiliated Hospital of Bengbu Medical College.

Conflict of interest

The authors declare no financially oriented conflicts of interest. Ethical approvals and informed written consent were obtained and provided from and to all participants. The study design was approved by the Institutional Review Board of the First Affiliated Hospital of Bengbu Medical College.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Li, Y., Zhang, L. et al. Patients with systemic lupus erythematosus show increased proportions of CD19+CD20 B cells and secretion of related autoantibodies. Clin Rheumatol (2020). https://doi.org/10.1007/s10067-020-05220-2

Download citation

Keywords

  • Autoantibody
  • B cell
  • Surface marker
  • Systemic lupus erythematosus