Skip to main content
Log in

Body adiposity index, lipid accumulation product, and cardiometabolic index reveal the contribution of adiposity phenotypes in the risk of hyperuricemia among Chinese rural population

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Adiposity phenotypes, estimated by higher body adiposity index (BAI), lipid accumulation product (LAP), and cardiometabolic index (CMI), has conferred increased metabolic risk. The relative contribution of BAI, LAP, and CMI in hyperuricemia, however, is unknown. We hypothesized that these obesity indicators would refine identification of hyperuricemia. Information on serum uric acid (SUA), fasting lipid profiles, and body adiposity measures (BAI, LAP, and CMI) were recorded in a cross-sectional population-based sample of 11,102 participants (≥ 35 years old) from China. BAI, LAP, and CMI were strong independent predictors of SUA in both sexes after correction for potential confounders. In multivariable models, odds ratio (OR) for hyperuricemia for 1 SD increment in BAI, LAP, and CMI were 1.361 (95% CI, 1.224–1.513), 1.393 (95% CI, 1.273–1.525), and 1.332 (95% CI, 1.224–1.448) in females, respectively. For males, these adiposity indices corresponded to an increased hyperuricemia risk of 14, 47, and 33%, respectively. Additionally, compared to the bottom category, females with the top quartile of BAI, LAP, and CMI showed higher adjusted odds of having hyperuricemia, with ORs of 2.064, 7.500, and 4.944, respectively. ORs for hyperuricemia were statistically significant in the fourth quartile of BAI (1.622 [1.258–2.091]), LAP (5.549 [3.907–7.880]), and CMI (3.878 [2.830–5.313]) of male subgroup. Accumulation of ectopic adiposity in general (quantified by increased BAI), and of visceral adipose tissue in particular (reflected by elevated LAP and CMI), provided important insight regarding hyperuricemia risk and might potentially shed further light on our understanding of the metabolic sequelae of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borghi C, Rosei EA, Bardin T, Dawson J, Dominiczak A, Kielstein JT, Manolis AJ, Perez-Ruiz F, Mancia G (2015) Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens 33 (9):1729–1741; discussion 1741. doi:https://doi.org/10.1097/hjh.0000000000000701

  2. Li C, Hsieh MC, Chang SJ (2013) Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol 25(2):210–216. https://doi.org/10.1097/BOR.0b013e32835d951e

    Article  PubMed  CAS  Google Scholar 

  3. Kleber ME, Delgado G, Grammer TB, Silbernagel G, Huang J, Kramer BK, Ritz E, Marz W (2015) Uric Acid and cardiovascular events: a Mendelian randomization study. Journal of the American Society of Nephrology : JASN 26(11):2831–2838. https://doi.org/10.1681/asn.2014070660

    Article  PubMed  CAS  Google Scholar 

  4. Zhao G, Huang L, Song M, Song Y (2013) Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis 231(1):61–68. https://doi.org/10.1016/j.atherosclerosis.2013.08.023

    Article  PubMed  CAS  Google Scholar 

  5. Kanellis J, Kang DH (2005) Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol 25(1):39–42

    Article  PubMed  CAS  Google Scholar 

  6. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, Matsuzawa Y (1998) Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metab Clin Exp 47(8):929–933

    Article  PubMed  CAS  Google Scholar 

  7. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, Shirakura T, Kato K, Imaizumi K, Takahashi H, Tamura M, Maeda N, Funahashi T, Shimomura I (2013) Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 288(38):27138–27149. https://doi.org/10.1074/jbc.M113.485094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ishizaka N, Ishizaka Y, Toda A, Tani M, Koike K, Yamakado M, Nagai R (2010) Changes in waist circumference and body mass index in relation to changes in serum uric acid in Japanese individuals. J Rheumatol 37(2):410–416. https://doi.org/10.3899/jrheum.090736

    Article  PubMed  CAS  Google Scholar 

  9. McAdams-DeMarco MA, Law A, Maynard JW, Coresh J, Baer AN (2013) Risk factors for incident hyperuricemia during mid-adulthood in African American and white men and women enrolled in the ARIC cohort study. BMC Musculoskelet Disord 14:347. https://doi.org/10.1186/1471-2474-14-347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang J, Chen RP, Lei L, Song QQ, Zhang RY, Li YB, Yang C, Lin SD, Chen LS, Wang YL, Zhao F, Liang GX, Hu BC, Lin JC, Cai DH (2013) Prevalence and determinants of hyperuricemia in type 2 diabetes mellitus patients with central obesity in Guangdong Province in China. Asia Pac J Clin Nutr 22(4):590–598. https://doi.org/10.6133/apjcn.2013.22.4.16

    Article  PubMed  CAS  Google Scholar 

  11. Suma S, Naito M, Okada R, Kawai S, Yin G, Morita E, Wakai K, Matsuo H, Hamajima N (2014) associations between body mass index and serum uric acid levels in a japanese population were significantly modified by LRP2 rs2544390. Nagoya J Med Sci 76(3–4):333–339

    PubMed  PubMed Central  Google Scholar 

  12. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116(1):39–48. https://doi.org/10.1161/circulationaha.106.675355

    Article  PubMed  Google Scholar 

  13. Canoy D, Boekholdt SM, Wareham N, Luben R, Welch A, Bingham S, Buchan I, Day N, Khaw KT (2007) Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation 116(25):2933–2943. https://doi.org/10.1161/circulationaha.106.673756

    Article  PubMed  Google Scholar 

  14. Kim TH, Lee SS, Yoo JH, Kim SR, Yoo SJ, Song HC, Kim YS, Choi EJ, Kim YK (2012) The relationship between the regional abdominal adipose tissue distribution and the serum uric acid levels in people with type 2 diabetes mellitus. Diabetology & metabolic syndrome 4(1):3. https://doi.org/10.1186/1758-5996-4-3

    Article  CAS  Google Scholar 

  15. Yamada A, Sato KK, Kinuhata S, Uehara S, Endo G, Hikita Y, Fujimoto WY, Boyko EJ, Hayashi T (2016) Association of visceral fat and Liver fat with hyperuricemia. Arthritis care & research 68(4):553–561. https://doi.org/10.1002/acr.22729

    Article  CAS  Google Scholar 

  16. Hikita M, Ohno I, Mori Y, Ichida K, Yokose T, Hosoya T (2007) Relationship between hyperuricemia and body fat distribution. Internal medicine (Tokyo, Japan) 46(17):1353–1358

    Article  Google Scholar 

  17. Britton KA, Fox CS (2011) Ectopic fat depots and cardiovascular disease. Circulation 124(24):e837–e841. https://doi.org/10.1161/circulationaha.111.077602

    Article  PubMed  Google Scholar 

  18. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodes-Cabau J, Bertrand OF, Poirier P (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28(6):1039–1049. https://doi.org/10.1161/atvbaha.107.159228

    Article  PubMed  CAS  Google Scholar 

  19. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, Xiang AH, Watanabe RM (2011) A better index of body adiposity. Obesity (Silver Spring, Md) 19(5):1083–1089. https://doi.org/10.1038/oby.2011.38

    Article  PubMed Central  Google Scholar 

  20. Melmer A, Lamina C, Tschoner A, Ress C, Kaser S, Laimer M, Sandhofer A, Paulweber B, Ebenbichler CF (2013) Body adiposity index and other indexes of body composition in the SAPHIR study: association with cardiovascular risk factors. Obesity (Silver Spring, Md) 21(4):775–781. https://doi.org/10.1002/oby.20289

    Article  CAS  Google Scholar 

  21. Barreira TV, Staiano AE, Harrington DM, Heymsfield SB, Smith SR, Bouchard C, Katzmarzyk PT (2012) Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women. Mayo Clin Proc 87(5):452–460. https://doi.org/10.1016/j.mayocp.2011.12.017

    Article  PubMed  PubMed Central  Google Scholar 

  22. D'Elia L, Manfredi M, Sabino P, Strazzullo P, Galletti F (2016) The Olivetti Heart Study: Predictive value of a new adiposity index on risk of hypertension, blood pressure, and subclinical organ damage. Nutrition, metabolism, and cardiovascular diseases : NMCD 26(7):630–636. https://doi.org/10.1016/j.numecd.2016.03.009

    Article  PubMed  CAS  Google Scholar 

  23. Lopez AA, Cespedes ML, Vicente T, Tomas M, Bennasar-Veny M, Tauler P, Aguilo A (2012) Body adiposity index utilization in a Spanish Mediterranean population: comparison with the body mass index. PLoS One 7(4):e35281. https://doi.org/10.1371/journal.pone.0035281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Marcadenti A, Fuchs FD, Moreira LB, Gus M, Fuchs SC (2017) Adiposity phenotypes are associated with type-2 diabetes: LAP index, body adiposity index, and neck circumference. Atherosclerosis 266:145–150. https://doi.org/10.1016/j.atherosclerosis.2017.09.022

    Article  PubMed  CAS  Google Scholar 

  25. Wakabayashi I, Daimon T (2015) The “cardiometabolic index” as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clinica chimica acta; international journal of clinical chemistry 438:274-278. doi:https://doi.org/10.1016/j.cca.2014.08.042

  26. Wakabayashi I, Sotoda Y, Hirooka S, Orita H (2015) Association between cardiometabolic index and atherosclerotic progression in patients with peripheral arterial disease. Clinica Chimica Acta; Int J Clin Chem 446:231–236. https://doi.org/10.1016/j.cca.2015.04.020

    Article  CAS  Google Scholar 

  27. Wakabayashi I (2016) A U-shaped relationship between alcohol consumption and cardiometabolic index in middle-aged men. Lipids Health Dis 15:50. https://doi.org/10.1186/s12944-016-0217-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ioachimescu AG, Brennan DM, Hoar BM, Hoogwerf BJ (2010) The lipid accumulation product and all-cause mortality in patients at high cardiovascular risk: a PreCIS database study. Obesity (Silver Spring, Md) 18(9):1836–1844. https://doi.org/10.1038/oby.2009.453

    Article  CAS  Google Scholar 

  29. Nascimento-Ferreira MV, Rendo-Urteaga T, Vilanova-Campelo RC, Carvalho HB, da Paz OG, Paes Landim MB, Torres-Leal FL (2017) The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clinical nutrition (Edinburgh, Scotland) 36(6):1693–1700. https://doi.org/10.1016/j.clnu.2016.12.020

    Article  CAS  Google Scholar 

  30. Bozorgmanesh M, Hadaegh F, Azizi F (2010) Diabetes prediction, lipid accumulation product, and adiposity measures; 6-year follow-up: Tehran lipid and glucose study. Lipids Health Dis 9:45. https://doi.org/10.1186/1476-511x-9-45

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo X, Li Z, Guo L, Zheng L, Yu S, Yang H, Zou L, Zhou Y, Zhang Y, Zhu L, Zhang Y, Sun Y (2014) An update on overweight and obesity in rural Northeast China: from lifestyle risk factors to cardiometabolic comorbidities. BMC Public Health 14:1046. https://doi.org/10.1186/1471-2458-14-1046

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Bai Y, Guo X, Zheng L, Sun Y, Roselle AM (2016) Alcohol consumption and cardiovascular diseases in rural China. Int J Cardiol 215:257–262. https://doi.org/10.1016/j.ijcard.2016.04.095

    Article  PubMed  Google Scholar 

  33. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dong J, Ni YQ, Chu X, Liu YQ, Liu GX, Zhao J, Yang YB, Yan YX (2016) Association between the abdominal obesity anthropometric indicators and metabolic disorders in a Chinese population. Public Health 131:3–10. https://doi.org/10.1016/j.puhe.2015.08.001

    Article  PubMed  CAS  Google Scholar 

  35. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, Lopez-Jimenez F (2010) Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes (2005) 34(5):791–799. https://doi.org/10.1038/ijo.2010.5

    Article  CAS  Google Scholar 

  36. Gomez-Ambrosi J, Silva C, Galofre JC, Escalada J, Santos S, Millan D, Vila N, Ibanez P, Gil MJ, Valenti V, Rotellar F, Ramirez B, Salvador J, Fruhbeck G (2012) Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (2005) 36 (2):286–294. doi:https://doi.org/10.1038/ijo.2011.100

  37. Deurenberg P, Deurenberg-Yap M, Guricci S (2002) Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obesity reviews : an official journal of the International Association for the Study of Obesity 3(3):141–146

    Article  CAS  Google Scholar 

  38. Seven E, Thuesen BH, Linneberg A, Jeppesen JL (2016) Abdominal adiposity distribution quantified by ultrasound imaging and incident hypertension in a general population. Hypertension (Dallas, Tex : 1979) 68(5):1115–1122. https://doi.org/10.1161/hypertensionaha.116.07306

    Article  CAS  Google Scholar 

  39. Dong H, Xu Y, Zhang X, Tian S (2017) Visceral adiposity index is strongly associated with hyperuricemia independently of metabolic health and obesity phenotypes. Sci Rep 7(1):8822. https://doi.org/10.1038/s41598-017-09455-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang N, Chang Y, Guo X, Chen Y, Ye N, Sun Y (2016) A Body Shape Index and Body Roundness Index: two new body indices for detecting association between obesity and hyperuricemia in rural area of China. European journal of internal medicine 29:32–36. https://doi.org/10.1016/j.ejim.2016.01.019

    Article  PubMed  CAS  Google Scholar 

  41. Kanaya AM, Harris T, Goodpaster BH, Tylavsky F, Cummings SR (2004) Adipocytokines attenuate the association between visceral adiposity and diabetes in older adults. Diabetes Care 27(6):1375–1380

    Article  PubMed  CAS  Google Scholar 

  42. Quinones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, Ferrannini E (1995) Effect of insulin on uric acid excretion in humans. Am J Phys 268(1 Pt 1):E1–E5

    CAS  Google Scholar 

  43. Facchini F, Chen YD, Hollenbeck CB, Reaven GM (1991) Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 266(21):3008–3011

    Article  PubMed  CAS  Google Scholar 

  44. Lyngdoh T, Vuistiner P, Marques-Vidal P, Rousson V, Waeber G, Vollenweider P, Bochud M (2012) Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One 7(6):e39321. https://doi.org/10.1371/journal.pone.0039321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Seyed-Sadjadi N, Berg J, Bilgin AA, Grant R (2017) Visceral fat mass: is it the link between uric acid and diabetes risk? Lipids Health Dis 16(1):142. https://doi.org/10.1186/s12944-017-0532-4

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fabregat I, Revilla E, Machado A (1987) Short-term control of the pentose phosphate cycle by insulin could be modulated by the NADPH/NADP ratio in rat adipocytes and hepatocytes. Biochem Biophys Res Commun 146(2):920–925

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from “Thirteenth Five-Year” program funds (The National Key Research and Development Program of China, Grant no. 2017YFC1307600) and “Twelfth Five-Year” project funds (The National Science and Technology Support Program of China, Grant no. 2012BAJ18B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., Wang, S. et al. Body adiposity index, lipid accumulation product, and cardiometabolic index reveal the contribution of adiposity phenotypes in the risk of hyperuricemia among Chinese rural population. Clin Rheumatol 37, 2221–2231 (2018). https://doi.org/10.1007/s10067-018-4143-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4143-x

Keywords

Navigation