Advertisement

Clinical Rheumatology

, Volume 37, Issue 4, pp 917–925 | Cite as

MRI assessment of erosion repair in patients with long-standing rheumatoid arthritis receiving double-filtration plasmapheresis in addition to leflunomide and methotrexate: a randomized controlled trial

  • Xiaoxia Yu
  • Lei Zhang
  • Lixin Wang
  • Weiwei Lu
  • Fengyan Sun
  • Ping Xu
  • Guobin Lan
Original Article
  • 103 Downloads

Abstract

The objective of this study is to investigate whether the addition of double-filtration plasmapheresis (DFPP) to leflunomide and methotrexate repairs MRI bone erosion in patients with long-standing rheumatoid arthritis (RA). Seventy-two patients with highly active RA of > 3 years’ duration were randomized to receive DFPP in addition to DMARDs (leflunomide and methotrexate) or DMARDs. Contrast-enhanced MRI of the right wrist was performed at months 0, 6, and 12. MRI bone erosion, synovitis, and bone edema were scored with validated methods. The primary endpoint was the change in MRI bone erosion over 12 months. Patients treated with DFPP in addition to DMARDs demonstrated significantly greater decrease in MRI erosion score compared with those treated with DMARDs, being 11.3 ± 9.6 at month 12, compared with 16.9 ± 8.3 in patients with DMARDs (P < 0.001), and compared with 14.4 ± 9.6 at baseline (P < 0.001). 84.2% of patients treated with DFPP in addition to DMARDs demonstrated a decrease in MRI erosion score. Synovitis and bone edema improved significantly with DFPP in addition to DMARDs compared with DMARDs at months 6 and 12. (1.05 ± 1.7 and 2.0 ± 3.9 compared with 8.0 ± 1.4 and 12.6 ± 7.9 at month 12). Patients without synovitis and bone edema reached in 55.3% among patients with DFPP in addition to DMARDs. This study demonstrated that DFPP combination therapy significantly decreased bone erosion and received the primary goal of repair of erosions through abrogating MRI inflammation (synovitis and bone edema) in long-standing RA patients with high disease activity. The findings suggest that addition of DFPP is associated with repair of erosions and further suppression of inflammation.

Keywords

Bone erosion Double-filtration plasmapheresis Long-standing Magnetic resonance imaging Repair of erosion Rheumatoid arthritis 

Notes

Funding information

This study was funded by the research project grant of science and technology from the Science and Technology Department of Hebei Province (grant number 13277755D).

Compliance with ethical standards

This study was approved by the Ethics Committee of Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou of Hebei (ethics approval number 2013013). Written informed consent was obtained from all subjects prior to study inclusion.

Disclosures

None.

References

  1. 1.
    Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, Combe B, Cutolo M, de Wit M, Dougados M, Emery P, Gibofsky A, Gomez-Reino JJ, Haraoui B, Kalden J, Keystone EC, Kvien TK, McInnes I, Martin-Mola E, Montecucco C, Schoels M, van der Heijde D, T2T Expert Committee (2010) Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 69(4):631–637.  https://doi.org/10.1136/ard.2009.123919 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cohen G, Gossec L, Dougados M, Cantagrel A, Goupille P, Daures JP, Rincheval N, Combe B (2007) Radiological damage in patients with rheumatoid arthritis on sustained remission. Ann Rheum Dis 66(3):358–363.  https://doi.org/10.1136/ard.2006.057497 CrossRefPubMedGoogle Scholar
  3. 3.
    Molenaar ET, Voskuy AE, Dinant HJ, Bezemer PD, Boers M, Dijkmans BA (2004) Progression of radiologic damage in patients with rheumatoid arthritis in clinical remission. Arthritis Rheum 50(1):36–42.  https://doi.org/10.1002/art.11481 CrossRefPubMedGoogle Scholar
  4. 4.
    Laganà B, Picchianti Diamanti A, Ferlito C, Germano V, Migliore A, Cremona A, Argento G, David V, Salemi S, D’Amelio R (2009) Imaging progression despite clinical remission in early rheumatoid arthritis patients after etanercept interruption. Int J Immunopathol Pharmacol 22(2):447–454.  https://doi.org/10.1177/039463200902200221 CrossRefPubMedGoogle Scholar
  5. 5.
    van der Kooij SM, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Güler-Yüksel M, Zwinderman AH, Kerstens PJ, van der Lubbe PA, de Beus WM, Grillet BA, Ronday HK, Huizinga TW, Breedveld FC, Dijkmans BA, Allaart CF (2009) Drug-free remission, functioning and radiographic damage after 4 years of response-driven treatment in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis 68:914–921CrossRefPubMedGoogle Scholar
  6. 6.
    Forslind K, Svensson B (2016) MRI evidence of persistent joint inflammation and progressive joint damage despite clinical remission during treatment of early rheumatoid arthritis. Scand J Rheumatol 45(2):99–102.  https://doi.org/10.3109/03009742.2015.1070902 CrossRefPubMedGoogle Scholar
  7. 7.
    Brown AK, Conaghan PG, Karim Z, Quinn MA, Ikeda K, Peterfy CG, Hensor E, Wakefield RJ, O'Connor PJ, Emery P (2008) An explanation for the apparent dissociation between clinical remission and continued structural deterioration in rheumatoid arthritis. Arthritis Rheum 58(10):2958–2967.  https://doi.org/10.1002/art.23945 CrossRefPubMedGoogle Scholar
  8. 8.
    Brown AK, Quinn MA, Karim Z, Conaghan PG, Peterfy CG, Hensor E, Wakefield RJ, O’Connor PJ, Emery P (2006) Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum 54(12):3761–3773.  https://doi.org/10.1002/art.22190 CrossRefPubMedGoogle Scholar
  9. 9.
    Sokolove J, Johnson DS, Lahey LJ, Wagner CA, Cheng D, Thiele GM, Michaud K, Sayles H, Reimold AM, Caplan L, Cannon GW, Kerr G, Mikuls TR, Robinson WH (2014) Rheumatoid factor as a potentiator of anti-citrullinated protein antibody mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol 66(4):813–821.  https://doi.org/10.1002/art.38307 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hecht C, Englbrecht M, Rech J, Schmidt S, Araujo E, Engelke K, Finzel S, Schett G (2015) Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann Rheum Dis 74(12):2151–2156.  https://doi.org/10.1136/annrheumdis-2014-205428 CrossRefPubMedGoogle Scholar
  11. 11.
    Humphreys JH, Verheul MK, Barton A, MacGregor AJ, Lunt M, Toes REM, Symmons DPM, Trouw LA, Verstappen SMM (2016) Anticarbamylated protein antibodies are associated with long-term disability and increased disease activity in patients with early inflammatory arthritis: results from the Norfolk arthritis register. Ann Rheum Dis 75(6):1139–1144.  https://doi.org/10.1136/annrheumdis-2015-207326 CrossRefPubMedGoogle Scholar
  12. 12.
    Kastbom A, Strandberg G, Lindroos A, Skogh T (2004) Anti-CCP antibody test predicts the disease course during 3 years in early rheumatoid arthritis (the Swedish TIRA project). Ann Rheum Dis 63(9):1085–1089.  https://doi.org/10.1136/ard.2003.016808 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Katchamart W, Koolvisoot A, Aromdee E, Chiowchanwesawakit P, Muengchan C (2015) Associations of rheumatoid factor and anti-citrullinated peptide antibody with disease progression and treatment outcomes in patients with rheumatoid arthritis. Rheumatol Int 35(10):1693–1699.  https://doi.org/10.1007/s00296-015-3271-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Bas S, Genevay S, Meyer O, Gabay C (2003) Anti-cyclic citrullinated peptide antibodies, IgM and IgA rheumatoid factors in the diagnosis and prognosis of rheumatoid arthritis. Rheumatology 42(5):677–680.  https://doi.org/10.1093/rheumatology/keg184 CrossRefPubMedGoogle Scholar
  15. 15.
    Kastbom A, Forslind K, Ernestam S, Geborek P, Karlsson JA, Petersson IF, Saevarsdottir S, Klareskog L, van Vollenhoven RF, Lundberg K (2016) Changes in the anticitrullinated peptide antibody response in relation to therapeutic outcome in early rheumatoid arthritis: results from the SWEFOT trial. Ann Rheum Dis 75(2):356–361.  https://doi.org/10.1136/annrheumdis-2014-205698 CrossRefPubMedGoogle Scholar
  16. 16.
    Ismail N, Neyra R, Hakim RM(2001) Plasmapheresis. In: Daugirdas JT, Blake PG, Ing TS(ed) handbook of dialysis, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp231–262Google Scholar
  17. 17.
    Zhang Y-y, Zheng T, Chen D-m, Gong D-h, Ji D-x, Liu Z-h (2014) Comparison of double filtration plasmapheresis with immunoadsorption therapy in patients with anti-glomerular basement membrane nephritis. BMC Nephrol 315(128)Google Scholar
  18. 18.
    Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31(3):315–324.  https://doi.org/10.1002/art.1780310302 CrossRefPubMedGoogle Scholar
  19. 19.
    Østergaard M, Peterfy C, Conaghan P, McQueen F, Bird P, Ejbjerg B, Shnier R, O'Connor P, Klarlund M, Emery P, Genant H, Lassere M, Edmonds J (2003) OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30(6):1385–1386PubMedGoogle Scholar
  20. 20.
    Prevoo ML, van Gestel AM, van T Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. (1996)Remission in a prospective study of patients with rheumatoid arthritis: American Rheumatism Association preliminary remission criteria in relation to the disease activity score. Br J Rheumatol 35:1101–1105, 11Google Scholar
  21. 21.
    Felson DT, Anderson JJ, Boers M, Bombardier C, Furst D, Goldsmith C, Katz LM, Lightfoot R Jr, Paulus H, Strand V et al (1995) American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis Rheum 38(6):727–735.  https://doi.org/10.1002/art.1780380602 CrossRefPubMedGoogle Scholar
  22. 22.
    Felson DT, Anderson JJ, Lange ML, Wells G, LaValley MP (1998) Should improvement in rheumatoid arthritis clinical trials be defined as fifty percent or seventy percent improvement in core set measures, rather than twenty percent? Arthritis Rheum 41(9):1564–1570.  https://doi.org/10.1002/1529-0131(199809)41:9<1564::AID-ART6>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  23. 23.
    Haijun Zhang, Sizeng Zhang, Xing Lin, Ming Jiang (2004) Treatment of rheumatoid arthritis. In: Ming Jiang, DAVID Yu, Xiaoyi Lin (ed) Rheumatology, first edn. Huaxia, Beijing, pp771–827Google Scholar
  24. 24.
    Peterfy C, Emery P, Tak PP, Østergaard M, DiCarlo J, Otsa K, Sarabia FN, Pavelka K, Bagnard M-A, Gylvin LH, Bernasconi C, Gabriele A (2016) MRI assessment of suppression of structural damage in patients with rheumatoid arthritis receiving rituximab: results from the randomised, placebo-controlled, double-blind RA-SCORE study. Ann Rheum Dis 75(1):170–177.  https://doi.org/10.1136/annrheumdis-2014-206015 CrossRefPubMedGoogle Scholar
  25. 25.
    Axelsen MB, Eshed H-PK, Stengaard-Pedersen K, Hetland ML, Møller J, Junker P, Pødenphant J, Schlemmer A, Ellingsen T, Ahlquist P, Lindegaard H, Linauskas A, Dam MY, Hansen I, Horn HC, Ammitzbøll CG, Jørgensen A, Krintel SB, Raun J, Krogh NS, Johansen JS, Østergaard M, OPERA study group (2015) A treat-to-target strategy with methotrexate and intra-articular triamcinolone with or without adalimumab effectively reduces MRI synovitis, osteitis and tenosynovitis and halts structural damage progression in early rheumatoid arthritis: results from the OPERA randomised controlled trial. Ann Rheum Dis 74(5):867–875.  https://doi.org/10.1136/annrheumdis-2013-204537 CrossRefPubMedGoogle Scholar
  26. 26.
    Conaghan PG, Peterfy C, Olech E, Kaine J, Ridley D, DiCarlo J, Friedman J, Devenport J, Troum O (2014) The effects of tocilizumab on osteitis, synovitis and erosion progression in rheumatoid arthritis: results from the ACT-RAY MRI substudy. Ann Rheum Dis 73(5):810–816.  https://doi.org/10.1136/annrheumdis-2013-204762 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
  28. 28.
    Conaghan PG, Emery P, Østergaard M, Keystone EC, Genovese MC, Hsia EC, Xu W, Rahman MU (2011) Assessment by MRI of inflammation and damage in rheumatoid arthritis patients with methotrexate inadequate response receiving golimumab: results of the GO-FORWARD trial. Ann Rheum Dis 70(11):1968–1974.  https://doi.org/10.1136/ard.2010.146068 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Conaghan PG, Durez P, Alten RE, Burmester GR, Tak PP, Klareskog L, Catrina AI, DiCarlo J, Gaillez C, Le Bars M, Zhou X, Peterfy C (2013) Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. Ann Rheum Dis 72(8):1287–1294.  https://doi.org/10.1136/annrheumdis-2012-201611 CrossRefPubMedGoogle Scholar
  30. 30.
    Durez P, Malghem J, Nzeusseu Toukap A, Depresseux G, Lauwerys BR, Westhovens R, Luyten FP, Corluy L, Houssiau FA, Verschueren P (2007) Treatment of early rheumatoid arthritis. A randomized magnetic resonance imaging study comparing the effects of methotrexate alone, methotrexate in combination with infliximab, and methotrexate in combination with intravenous pulse methylprednisolone. ARTHRITIS RHEUM 56(12):3919–3927.  https://doi.org/10.1002/art.23055 CrossRefPubMedGoogle Scholar
  31. 31.
    Boesen M, Boesen L, Jensen KE, Cimmino MA, Torp-Pedersen S, Terslev L, Koenig M, Danneskiold-Samsøe B, Røgind H, Bliddal H (2008) Clinical outcome and imaging changes after intraarticular (IA) application of etanercept or methylprednisolone in rheumatoid arthritis: magnetic resonance imaging and ultrasound-Doppler show no effect of IA injections in the wrist after 4 weeks. J Rheumatol 35(4):584–591PubMedGoogle Scholar
  32. 32.
    Yu X, Wang L, Xu P, Lu W, Lan G, Ping L, Wang X, Tian J, Liu J (2012) Effects of double filtration plasmapheresis, leflunomide, and methotrexate on inflammatory changes found through magnetic resonance imaging in early rheumatoid arthritis. J Rheumatol 39(6):1171–1178.  https://doi.org/10.3899/jrheum.110978 CrossRefPubMedGoogle Scholar
  33. 33.
    Boeters DM, Nieuwenhuis WP, Verheul MK, Newsum EC, Reijnierse M, Toes REM, Trouw LA, van der Helm-van Mil AHM (2016) MRI-detected osteitis is not associated with the presence or level of ACPA alone, but with the combined presence of ACPA and RF. Arthritis Res Ther 18(1):179.  https://doi.org/10.1186/s13075-016-1076-0 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li H, Song W, Li Y, Liu Y, Bai J, Li X, Mu F, Wang Y, Zhang F, Su L (2010) Diagnostic value of anti-cyclic citrullinated peptide antibodies in northern Chinese Han patients with rheumatoid arthritis and its correlation with disease activity. Clin Rheumatol 29(4):413–417.  https://doi.org/10.1007/s10067-009-1337-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Tamai M, Kawakami A, Uetani M, Takao S, Tanaka F, Nakamura H, Iwanaga N, Izumi Y, Arima K, Aratake K, Kamachi M, Huang M, Origuchi T, Ida H, Aoyagi K, Eguchi K (2006) The presence of anti-cyclic citrullinated peptide antibody is associated with magnetic resonance imaging detection of bone marrow oedema in early stage rheumatoid arthritis. Ann Rheum Dis 65(1):133–134.  https://doi.org/10.1136/ard.2005.04138 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ibn Yacoub Y, Amine B, Laatiris A, Hajjaj-Hassouni N (2012) Rheumatoid factor and antibodies against citrullinated peptides in Moroccan patients with rheumatoid arthritis: association with disease parameters and quality of life. Clin Rheumatol 31(2):329–334.  https://doi.org/10.1007/s10067-011-1820-4 CrossRefPubMedGoogle Scholar
  37. 37.
    Ajeganova S, van Steenbergen HW, Verheul MK, Forslind K, Hafström I, Toes RE, Huizinga TW, Svensson B, Trouw LA, van der Helm-van Mil AH (2017) The association between anti-carbamylated protein (anti-CarP) antibodies and radiographic progression in early rheumatoid arthritis: a study exploring replication and the added value to ACPA and rheumatoid factor. Ann Rheum Dis 76(1):112–118.  https://doi.org/10.1136/annrheumdis-2015-208870 CrossRefPubMedGoogle Scholar
  38. 38.
    Yee A, Webb T, Seaman A, Infantino M, Meacci F, Manfredi M, Benucci M, Lakos G, Favalli E, Schioppo T, Meroni PL, Mahler M (2015) Anti-CarP antibodies as promising marker to measure joint damage and disease activity in patients with rheumatoid arthritis. Immunol Res 61(1–2):24–30.  https://doi.org/10.1007/s12026-014-8560-x CrossRefPubMedGoogle Scholar
  39. 39.
    Smolen JS, Aletaha D, Mc Innes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038.  https://doi.org/10.1016/S0140-6736(16)30173-8 CrossRefPubMedGoogle Scholar
  40. 40.
    Li L, Wen W, Jia R, Li Y, Liu X, Sun X, Li Z (2016) GITRL is associated with increased autoantibody production in patients with rheumatoid arthritis. Clin Rheumatol 35(9):2195–2202.  https://doi.org/10.1007/s10067-016-3280-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Mateen S, Zafar A, Moin S, Khan AQ, Zubair S (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171.  https://doi.org/10.1016/j.cca.2016.02.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Derksen VFAM, Huizinga TWJ, van der Woude D (2017) The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin Immunopathol 39(4):437–446.  https://doi.org/10.1007/s00281-017-0627-z CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu X, Ma J, Tian J, Jiang S, Xu P, Han H, Wang L (2007) A controlled study of double filtration plasmapheresis in the treatment of active rheumatoid arthritis. J Clin Rheumatol 13(4):193–198.  https://doi.org/10.1097/RHU.0b013e318124a483 CrossRefPubMedGoogle Scholar
  44. 44.
    Chen Y, Yang L, Li K, Liu Z, Gong D, Zhang H, Liu Z, Hu W (2016) Double filtration plasmapheresis in the treatment of antineutrophil cytoplasmic autoantibody associated vasculitis with severe renal failure: a preliminary study of 15 patients. Ther Apher Dial 20(2):183–188.  https://doi.org/10.1111/1744-9987.12389 CrossRefPubMedGoogle Scholar
  45. 45.
    Gong D, Ji D, Xu B, Liu Z (2013) More selective removal of myeloperoxidase-anti-neutrophil cytoplasmic antibody from the circulation of patients with vasculitides using a novel double-filtration plasmapheresis therapy. Ther Apher Dial 17(1):93–98.  https://doi.org/10.1111/j.1744-9987.2012.01107.x CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2018

Authors and Affiliations

  • Xiaoxia Yu
    • 1
  • Lei Zhang
    • 2
  • Lixin Wang
    • 1
  • Weiwei Lu
    • 1
  • Fengyan Sun
    • 1
  • Ping Xu
    • 1
  • Guobin Lan
    • 1
  1. 1.Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou of HebeiCangzhouChina
  2. 2.66736 Troops of Chinese People’s Liberation ArmyBeijingChina

Personalised recommendations