Advertisement

Clinical Rheumatology

, Volume 37, Issue 4, pp 963–970 | Cite as

High frequency of mutant thiopurine S-methyltransferase genotypes in Mexican patients with systemic lupus erythematosus and rheumatoid arthritis

  • Mireya Ramirez-Florencio
  • Silvia Jiménez-Morales
  • Rosa Elda Barbosa-Cobos
  • Daniela Josabeth López-Cano
  • Julian Ramírez-Bello
Original Article
  • 92 Downloads

Abstract

Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are treated with immunosuppressive purine analogs, 6-mercaptopurine/6-thioguanine/azathiopurine, which are inactivated by thiopurine S-methyltransferase (TPMT). Non-synonymous polymorphisms in TPMT are associated with increased risk of adverse effects in patients treated with thiopurines. This study aimed to determine the frequency of the most common mutant TPMT alleles in Mexican patients with SLE (a prototype autoimmune disease) and RA (one of the most common autoimmune diseases in Mexico). Five hundred fifty-three consecutive patients from Central Mexico with SLE (178) and RA (375) were included. Subjects were genotyped to identify TPMT*2 (rs1800462), TPMT*3A (rs1800460 and rs1142345), TPMT*3B (rs1800460), and TPMT*3C (rs1142345) mutant alleles. DNA samples were assayed with the 5′ exonuclease technique and TaqMan probes. Mutant alleles were detected in 6.2 and 5.2% of SLE and RA cases, respectively. Of note, 12.4% of SLE cases and 10.1% of RA cases carried mutant genotypes. Among those, the null genotype (TPMT*2/*3A, 0.3%) and the TPMT*3B (0.5%) and TPMT*3C (1.0%) alleles were found in RA, but not SLE cases. Mexican SLE cases displayed the highest frequency of mutant TPMT genotypes worldwide. TPMT genotyping should be performed for Mexican patients with SLE and RA before prescribing purine analogs.

Keywords

Mexican Mutant alleles Rheumatoid arthritis Systemic lupus erythematosus Thiopurine S-methyltransferase 

Notes

Funding information

This study was supported by the Consejo Nacional de Ciencia y Tecnología de México (CONACyT) (FOSISS; project no. 233107).

Compliance with ethical standards

Institutional ethics and research committees from the Juarez Hospital of Mexico approved this study, and written informed consent was obtained from each patient.

Disclosures

None.

References

  1. 1.
    Atassi MZ, Casali P (2008) Molecular mechanisms of autoimmunity. Autoimmunity 41(2):123–132.  https://doi.org/10.1080/08916930801929021 PubMedCrossRefGoogle Scholar
  2. 2.
    Lettre G, Rioux JD (2008) Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet 17(R2):R116–R121.  https://doi.org/10.1093/hmg/ddn246 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Beltrán Ramírez O, Mendoza Rincón JF, Barbosa Cobos RE, Alemán Ávila I, Ramírez Bello J (2016) STAT4 confers risk for rheumatoid arthritis and systemic lupus erythematosus in Mexican patients. Immunol Lett 175:40–43.  https://doi.org/10.1016/j.imlet.2016.05.003 PubMedCrossRefGoogle Scholar
  4. 4.
    Bartoloni E, Shoenfeld Y, Gerli R (2011) Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin. Arthritis Care Res (Hoboken) 63(2):178–183.  https://doi.org/10.1002/acr.20322 CrossRefGoogle Scholar
  5. 5.
    Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121.  https://doi.org/10.1056/NEJMra1100359 PubMedCrossRefGoogle Scholar
  6. 6.
    Lisnevskaia L, Murphy G, Isenberg D (2014) Systemic lupus erythematosus. Lancet 384(9957):1878–1888.  https://doi.org/10.1016/S0140-6736(14)60128-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Scott DL, Wolfe F, Huizinga TW (2010) Rheumatoid arthritis. Lancet 376(9746):1094–1108.  https://doi.org/10.1016/S0140-6736(10)60826-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Prete M, Racanelli V, Digiglio L, Vacca A, Dammacco F, Perosa F (2011) Extra-articular manifestations of rheumatoid arthritis: an update. Autoimmun Rev 11(2):123–131.  https://doi.org/10.1016/j.autrev.2011.09.001 PubMedCrossRefGoogle Scholar
  9. 9.
    Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R (2001) Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 19(8):2293–2301.  https://doi.org/10.1200/JCO.2001.19.8.2293 PubMedCrossRefGoogle Scholar
  10. 10.
    Hawwa AF, Millership JS, Collier PS, Vandenbroeck K, McCarthy A, Dempsey S, Cairns C, Collins J, Rodgers C, McElnay JC (2008) Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br J Clin Pharmacol 66(4):517–528.  https://doi.org/10.1111/j.1365-2125.2008.03248.x PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Secretaría de Salud. Diagnóstico y Tratamiento de Artritis Reumatoide del Adulto. México: Secretaría de Salud, 2010. www.cenetec.salud.gob.mx/interior/gpc.html
  12. 12.
    Axelrad JE, Roy A, Lawlor G, Korelitz B, Lichtiger S (2016) Thiopurines and inflammatory bowel disease: current evidence and a historical perspective. World J Gastroenterol 22(46):10103–10117.  https://doi.org/10.3748/wjg.v22.i46.10103 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Abaji R, Krajinovic M (2017) Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. Pharm Pers Med 10:143–156.  https://doi.org/10.2147/PGPM.S108123 Google Scholar
  14. 14.
    Cardiel MH, Díaz-Borjón A, Vázquez del Mercado Espinosa M, Gámez-Nava JI, Barile Fabris LA, Pacheco Tena C, Silveira Torre LH, Pascual Ramos V, Goycochea Robles MV, Aguilar Arreola JE, González Díaz V, Alvarez Nemegyei J, González-López Ldel C, Salazar Páramo M, Portela Hernández M, Castro Colín Z, Xibillé Friedman DX, Alvarez Hernández E, Casasola Vargas J, Cortés Hernández M, Flores-Alvarado DE, Martínez Martínez LA, Vega-Morales D, Flores-Suárez LF, Medrano Ramírez G, Barrera Cruz A, García González A, López López SM, Rosete Reyes A, Espinosa Morales R (2014) Actualización de la Guía Mexicana para el Tratamiento Farmacológico de la Artritis Reumatoide del Colegio Mexicano de Reumatología. Reumatol Clin 10(4):227–240.  https://doi.org/10.1016/j.reuma.2013.10.006 PubMedCrossRefGoogle Scholar
  15. 15.
    Saavedra Salinas MÁ, Barrera Cruz A, Cabral Castañeda AR, Jara Quezada LJ, Arce-Salinas CA, Álvarez Nemegyei J, Fraga Mouret A, Orozco Alcalá J, Salazar Páramo M, Cruz Reyes CV, Andrade Ortega L, Vera Lastra OL, Mendoza Pinto C, Sánchez González A, Cruz Cruz Pdel R, Morales Hernández S, Portela Hernández M, Pérez Cristóbal M, Medina García G, Hernández Romero N, Velarde Ochoa Mdel C, Navarro Zarza JE, Portillo Díaz V, Vargas Guerrero A, Goycochea Robles MV, García Figueroa JL, Barreira Mercado E, Amigo Castañeda MC (2015) Clinical practice guidelines for the management of pregnancy in women with autoimmune rheumatic diseases of the Mexican College of Rheumatology. Part II. Reumatol Clin 11(5):305–315.  https://doi.org/10.1016/j.reuma.2014.12.004 PubMedCrossRefGoogle Scholar
  16. 16.
    Clunie GP, Lennard L (2004) Relevance of thiopurine methyltransferase status in rheumatology patients receiving azathioprine. Rheumatology (Oxford) 43(1):13–18.  https://doi.org/10.1093/rheumatology/keg442 CrossRefGoogle Scholar
  17. 17.
    Liu YP, HQ X, Li M, Yang X, Yu S, WL F, Huang Q (2015) Association between thiopurine S-methyltransferase polymorphisms and azathioprine-induced adverse drug reactions in patients with autoimmune diseases: a meta-analysis. PLoS One 10(12):e0144234.  https://doi.org/10.1371/journal.pone.0144234 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wennerstrand P, Mårtensson LG, Söderhäll S, Zimdahl A, Appell ML (2013) Methotrexate binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in childhood leukaemia. Eur J Clin Pharmacol 69(9):1641–1649.  https://doi.org/10.1007/s00228-013-1521-9 PubMedCrossRefGoogle Scholar
  19. 19.
    Schaeffeler E, Lang T, Zanger UM, Eichelbaum M, Schwab M (2001) High-throughput genotyping of thiopurine S-methyltransferase by denaturing HPLC. Clin Chem 47(3):548–555PubMedGoogle Scholar
  20. 20.
    Krynetski E, Evans WE (2003) Drug methylation in cancer therapy: lessons from the TPMT polymorphism. Oncogene 22(47):7403–7413.  https://doi.org/10.1038/sj.onc.1206944 PubMedCrossRefGoogle Scholar
  21. 21.
    Sanderson J, Ansari A, Marinaki T, Duley J (2004) Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem 41(4):294–302.  https://doi.org/10.1258/0004563041201455 PubMedCrossRefGoogle Scholar
  22. 22.
    DiPiero J, Teng K, Hicks JK (2015) Should thiopurine methyltransferase (TPMT) activity be determined before prescribing azathioprine, mercaptopurine, or thioguanine? Cleve Clin J Med 82(7):409–413.  https://doi.org/10.3949/ccjm.82a.14106 PubMedCrossRefGoogle Scholar
  23. 23.
    Kim MG, Ko M, Kim IW, Oh JM (2016) Meta-analysis of the impact of thioprine S-methyltransferase polymorphisms on the tolerable 6-mercaptopurine dose considering initial dose and ethnic difference. Onco Targets Ther 9:7133–7139.  https://doi.org/10.2147/OTT.S110800 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wiwattanakul S, Prommas S, Jenjirattithigarn N, Santon S, Puangpetch A, Pakakasama S, Anurathapan U, Sukasem C (2017) Development and validation of a reliable method for thiopurine methyltransferase (TPMT) enzyme activity in human whole blood by LC-MS/MS: an application for phenotypic and genotypic correlations. J Pharm Biomed Anal 145:758–764.  https://doi.org/10.1016/j.jpba.2017.07.039 PubMedCrossRefGoogle Scholar
  25. 25.
    Rossi AM, Bianchi M, Guarnieri C, Barale R, Pacifici GM (2001) Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur J Clin Pharmacol 57(1):51–54.  https://doi.org/10.1007/s002280000246 PubMedCrossRefGoogle Scholar
  26. 26.
    Wang L, Pelleymounter L, Weinshilboum R, Johnson JA, Hebert JM, Altman RB, Tem K (2010) Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet Genomics 20(6):401–415.  https://doi.org/10.1097/FPC.0b013e3283352860 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Elawi AM, Irshaid YM, Ismail SI, Mustafa KN (2013) Thiopurine S-methytransferase gene polymorphism in rheumatoid arthritis. Arch Med Res 44(2):105–109.  https://doi.org/10.1016/j.arcmed.2013.01.006 PubMedCrossRefGoogle Scholar
  28. 28.
    Taja-Chayeb L, Vidal-Millán S, Gutiérrez O, Ostrosky-Wegman P, Dueñas-González A, Candelaria M (2008) Thiopurine S-methyltransferase gene (TMPT) polymorphisms in a Mexican population of healthy individuals and leukemic patients. Med Oncol 25(1):56–62.  https://doi.org/10.1007/s12032-007-9002-6 PubMedCrossRefGoogle Scholar
  29. 29.
    Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D, Spurr N, Lennard L, Wieben E, Weinshilboum R (1996) Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 15(1):17–30.  https://doi.org/10.1089/dna.1996.15.17 PubMedCrossRefGoogle Scholar
  30. 30.
    Tai HL, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, Evans WE (1996) Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 58(4):694–702PubMedPubMedCentralGoogle Scholar
  31. 31.
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Klein TE (2011) Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391.  https://doi.org/10.1038/clpt.2010.320 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nguyen CM, Mendes MA, Ma JD (2011) Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr 3:RRN1236PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hoffman JM, Haidar CE, Wilkinson MR, Crews KR, Baker DK, Kornegay NM, Yang W, Pui CH, Reiss UM, Gaur AH, Howard SC, Evans WE, Broeckel U, Relling MV (2014) PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics. Am J Med Genet C Semin Med Genet 166C(1):45–55.  https://doi.org/10.1002/ajmg.c.31391 PubMedCrossRefGoogle Scholar
  34. 34.
    Lennard L, Cartwright CS, Wade R, Vora A (2015) Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol 169(2):228–240.  https://doi.org/10.1111/bjh.13240 PubMedCrossRefGoogle Scholar
  35. 35.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725.  https://doi.org/10.1002/art.1780400928 PubMedCrossRefGoogle Scholar
  36. 36.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmonds D, Tak PP, Upchurch KS, Vencovskýy J, Wolfe F, Hawker G (2010) Rheumatoid classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581PubMedCrossRefGoogle Scholar
  37. 37.
    Gallone G, Haerty W, Disanto G, Ramagopalan SV, Ponting CP, Berlanga-Taylor AJ (2017) Identification of genetic variants affecting vitamin D receptor binding and associations with autoimmune disease. Hum Mol Genet 26(11):2164–2176.  https://doi.org/10.1093/hmg/ddx092 PubMedCrossRefGoogle Scholar
  38. 38.
    Steri M, Orrù V, Idda ML, Pitzalis M, Pala M, Zara I, Sidore C, Faà V, Floris M, Deiana M, Asunis I, Porcu E, Mulas A, Piras MG, Lobina M, Lai S, Marongiu M, Serra V, Marongiu M, Sole G, Busonero F, Maschio A, Cusano R, Cuccuru G, Deidda F, Poddie F, Farina G, Dei M, Virdis F, Olla S, Satta MA, Pani M, Delitala A, Cocco E, Frau J, Coghe G, Lorefice L, Fenu G, Ferrigno P, Ban M, Barizzone N, Leone M, Guerini FR, Piga M, Firinu D, Kockum I, Lima Bomfim I, Olsson T, Alfredsson L, Suarez A, Carreira PE, Castillo-Palma MJ, Marcus JH, Congia M, Angius A, Melis M, Gonzalez A, Alarcón Riquelme ME, da Silva BM, Marchini M, Danieli MG, Del Giacco S, Mathieu A, Pani A, Montgomery SB, Rosati G, Hillert J, Sawcer S, D'Alfonso S, Todd JA, Novembre J, Abecasis GR, Whalen MB, Marrosu MG, Meloni A, Sanna S, Gorospe M, Schlessinger D, Fiorillo E, Zoledziewska M, Cucca F (2017) Overexpression of the cytokine BAFF and autoimmunity risk. N Engl J Med 376(17):1615–1626.  https://doi.org/10.1056/NEJMoa1610528 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    López-Cano DJ, Cadena-Sandoval D, Beltrán-Ramírez O, Barbosa-Cobos RE, Sánchez-Muñoz F, Amezcua-Guerra LM, Juárez-Vicuña Y, Aguilera-Cartas MC, Moreno J, Baustista-Olvera J, Valencia-Pacheco G, López-Villanueva RF, Ramírez-Bello J (2017) The PTPN22 R263Q polymorphism confers protection against systemic lupus erythematosus and rheumatoid arthritis, while PTPN22 R620W confers susceptibility to Graves’ disease in a Mexican population. Inflamm Res 66(9):775–781.  https://doi.org/10.1007/s00011-017-1056-0 PubMedCrossRefGoogle Scholar
  40. 40.
    Ngo ST, Steyn FJ, McCombe PA (2014) Gender differences in autoimmune disease. Front Neuroendocrinol 35(3):347–369.  https://doi.org/10.1016/j.yfrne.2014.04.004 PubMedCrossRefGoogle Scholar
  41. 41.
    Peláez-Ballestas I, Sanin LH, Moreno-Montoya J, Alvarez-Nemegyei J, Burgos-Vargas R, Garza-Elizondo M, Rodríguez-Amado J, Goycochea-Robles MV, Madariaga M, Zamudio J, Santana N, Cardiel MH, Grupo de Estudio Epidemiológico de Enfermedades Músculo Articulares (GEEMA) (2011) Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl 86(0):3–8.  https://doi.org/10.3899/jrheum.100951 PubMedCrossRefGoogle Scholar
  42. 42.
    Booth RA, Ansari MT, Tricco AC, Loit E, Weeks L, Doucette S, Skidmore B, Hoch JS, Tsouros S, Sears M, Sy R, Karsh J, Mani S, Galipeau J, Yurkiewich A, Daniel R, Tsertsvadze A, Yazdi F (2010) Assessment of thiopurine methyltransferase activity in patients prescribed azathioprine or other thiopurine-based drugs. Evid Rep Technol Assess (Full Rep) 1–282Google Scholar
  43. 43.
    Goding JW (2001) Autoimmune diseases. N Engl J Med 345(23):1707–1708PubMedCrossRefGoogle Scholar
  44. 44.
    Pope J, Jerome D, Fenlon D, Krizova A, Ouimet J (2003) Frequency of adverse drug reactions in patients with systemic lupus erythematosus. J Rheumatol 30(3):480–484PubMedGoogle Scholar
  45. 45.
    Schedel J, Gödde A, Schütz E, Bongartz TA, Lang B, Schölmerich J, Müller-Ladner U (2006) Impact of thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations in patients with chronic inflammatory diseases. Ann N Y Acad Sci 1069(1):477–491.  https://doi.org/10.1196/annals.1351.048 PubMedCrossRefGoogle Scholar
  46. 46.
    Kim HY, Lee SH, Lee MN, Kim JW, Kim YH, Kim MJ, Lee YM, Kang B, Choe YH, Lee NH, Kim DH, Yoo KH, Sung KW, Lee SY, Koo HH (2015) Complete sequence-based screening of TPMT variants in the Korean population. Pharmacogenet Genomics 25(3):143–146.  https://doi.org/10.1097/FPC.0000000000000117 PubMedCrossRefGoogle Scholar
  47. 47.
    González-Del Angel A, Bermúdez-López C, Alcántara-Ortigoza MA, Vela-Amieva M, Castillo-Cruz RA, Martínez V, Torres-Espíndola L (2009) Thiopurine S-methyltransferase (TPMT) genetic polymorphisms in Mexican newborns. J Clin Pharm Ther 34(6):703–708.  https://doi.org/10.1111/j.1365-2710.2009.01058.x PubMedCrossRefGoogle Scholar
  48. 48.
    Ramos MA, Mares RE, Avalos ED, Hernández A, Hernández R, Lameda R, Malváez AE, Rodríguez CA, Rodríguez R (2011) Pharmacogenetic screening of N-acetyltransferase 2, thiopurine s-methyltransferase, and 5,10-methylene-tetrahydrofolate reductase polymorphisms in Northwestern Mexicans. Genet Test Mol Biomarkers 15(5):351–355.  https://doi.org/10.1089/gtmb.2010.0216 PubMedCrossRefGoogle Scholar
  49. 49.
    Gutiérrez-Álvarez O, Lares-Asseff I, Galaviz-Hernández C, Reyes-Espinoza EA, Almanza-Reyes H, Sosa-Macías M, Chairez Hernández I, Salas-Pacheco JM, Bailón-Soto CE (2016) Involvement of MTHFR and TPMT genes in susceptibility to childhood acute lymphoblastic leukemia (ALL) in Mexicans. Drug Metab Pers Ther 31(1):41–46.  https://doi.org/10.1515/dmpt-2015-0036 PubMedGoogle Scholar
  50. 50.
    Jiménez-Morales S, Ramírez-Florencio M, Mejía-Aranguré JM, Núñez-Enríquez JC, Bekker-Mendez C, Torres-Escalante JL, Flores-Lujano J, Jiménez-Hernández E, Del Carmen R-ZM, Leal YA, González-Montalvo PM, Pantoja-Guillen F, Peñaloza-Gonzalez JG, Gutiérrez-Juárez EI, Núñez-Villegas NN, Pérez-Saldivar ML, Guerra-Castillo FX, Flores-Villegas LV, Ramos-Cervantes MT, Fragoso JM, García-Escalante MG, Del Carmen P-ED, Ramírez-Bello J, Hidalgo-Miranda A (2016) Analysis of thiopurine S-methyltransferase deficient alleles in acute lymphoblastic leukemia patients in Mexican patients. Arch Med Res 47(8):615–622.  https://doi.org/10.1016/j.arcmed.2016.11.018 PubMedCrossRefGoogle Scholar
  51. 51.
    Isaza C, Henao J, López AM, Cacabelos R (2003) Allelic variants of the thiopurine methyltransferase (TPMT) gene in the Colombian population. Methods Find Exp Clin Pharmacol 25(6):423–429.  https://doi.org/10.1358/mf.2003.25.6.769646 PubMedCrossRefGoogle Scholar
  52. 52.
    Laróvere LE, de Kremer RD, Lambooy LH, De Abreu RA (2003) Genetic polymorphism of thiopurine S-methyltransferase in Argentina. Ann Clin Biochem 40(4):388–393.  https://doi.org/10.1258/000456303766477039 PubMedCrossRefGoogle Scholar
  53. 53.
    HF L, Shih MC, Hsueh SC, Chen CM, Chang JY, Chang JG (2005) Molecular analysis of the thiopurine S-methyltransferase alleles in Bolivians and Tibetans. J Clin Pharm Ther 30:491–496CrossRefGoogle Scholar
  54. 54.
    Jun JB, Cho DY, Kang C, Bae SC (2005) Thiopurine S-methyltransferase polymorphisms and the relationship between the mutant alleles and the adverse effects in systemic lupus erythematosus patients taking azathioprine. Clin Exp Rheumatol 23(6):873–876PubMedGoogle Scholar
  55. 55.
    Okada Y, Nakamura K, Kodama T, Ueki K, Tsukada Y, Maezawa A, Tsukamoto N, Nojima Y, Ishizaki T, Horiuchi R, Yamamoto K (2005) Thiopurine methyltransferase genotype and phenotype status in Japanese patients with systemic lupus erythematosus. Biol Pharm Bull 28(11):2117–2119.  https://doi.org/10.1248/bpb.28.2117 PubMedCrossRefGoogle Scholar
  56. 56.
    Chen D, Lian F, Yuan S, Wang Y, Zhan Z, Ye Y, Qiu Q, Xu H, Liang L, Yang X (2014) Association of thiopurine methyltransferase status with azathioprine side effects in Chinese patients with systemic lupus erythematosus. Clin Rheumatol 33(4):499–503.  https://doi.org/10.1007/s10067-013-2441-x PubMedCrossRefGoogle Scholar
  57. 57.
    Naughton MA, Battaglia E, O'Brien S, Walport MJ, Botto M (1999) Identification of thiopurine methyltransferase (TPMT) polymorphisms cannot predict myelosuppression in systemic lupus erythematosus patients taking azathioprine. Rheumatology (Oxford) 38(7):640–644.  https://doi.org/10.1093/rheumatology/38.7.640 CrossRefGoogle Scholar
  58. 58.
    Tani C, Mosca M, Colucci R, Gori G, d'Ascanio A, Ghisu N, Fornai M, Di Paolo A, Blandizzi C, Del Tacca M, Bombardieri S (2009) Genetic polymorphisms of thiopurine S-methyltransferase in a cohort of patients with systemic autoimmune diseases. Clin Exp Rheumatol 27(2):321–324PubMedGoogle Scholar
  59. 59.
    Corominas H, Domènech M, Laíz A, Gich I, Geli C, Díaz C, de Cuevillas F, Moreno M, Vázquez G, Baiget M (2003) Is thiopurine methyltransferase genetic polymorphism a major factor for withdrawal of azathioprine in rheumatoid arthritis patients? Rheumatology (Oxford) 42(1):40–45.  https://doi.org/10.1093/rheumatology/keg028 CrossRefGoogle Scholar
  60. 60.
    Marsh S, King CR, Van Booven DJ, Revollo JY, Gilman RH, McLeod HL (2015) Pharmacogenomic assessment of Mexican and Peruvian populations. Pharmacogenomics 16(5):441–448.  https://doi.org/10.2217/pgs.15.10 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Choudhry S, Coyle NE, Tang H, Salari K, Lind D, Clark SL, Tsai HJ, Naqvi M, Phong A, Ung N, Matallana H, Avila PC, Casal J, Torres A, Nazario S, Castro R, Battle NC, Perez-Stable EJ, Kwok PY, Sheppard D, Shriver MD, Rodriguez-Cintron W, Risch N, Ziv E, Burchard EG, Genetics of Asthma in Latino Americans GALA Study (2006) Population stratification confounds genetic association studies among Latinos. Hum Genet 118:652–664PubMedCrossRefGoogle Scholar
  62. 62.
    Alarcón-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, Sánchez-Rodríguez E, Ainsworth HC, Ortiz-Tello P, Comeau ME, Rasmussen A, Kelly JA, Adler A, Acevedo-Vázquez EM, Cucho-Venegas JM, García-De la Torre I, Cardiel MH, Miranda P, Catoggio LJ, Maradiaga-Ceceña M, Gaffney PM, Vyse TJ, Criswell LA, Tsao BP, Sivils KL, Bae SC, James JA, Kimberly RP, Kaufman KM, Harley JB, Esquivel-Valerio JA, Moctezuma JF, García MA, Berbotto GA, Babini AM, Scherbarth H, Toloza S, Baca V, Nath SK, Aguilar Salinas C, Orozco L, Tusié-Luna T, Zidovetzki R, Pons-Estel BA, Langefeld CD, Jacob CO (2016) Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol 68(4):932–943.  https://doi.org/10.1002/art.39504 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zúñiga J, Yu N, Barquera R, Alosco S, Ohashi M, Lebedeva T, Acuña-Alonzo V, Yunis M, Granados-Montiel J, Cruz-Lagunas A, Vargas-Alarcón G, Rodríguez-Reyna TS, Fernandez-Viña M, Granados J, Yunis EJ (2013) HLA class I and class II conserved extended haplotypes and their fragments or blocks in Mexicans: implications for the study of genetic diversity in admixed populations. PLoS One 8(9):e74442.  https://doi.org/10.1371/journal.pone.0074442 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, Lin TN, Hoshitsuki K, Nersting J, Kihira K, Hofmann U, Komada Y, Kato M, McCorkle R, Li L, Koh K, Najera CR, Kham SK, Isobe T, Chen Z, Chiew EK, Bhojwani D, Jeffries C, Lu Y, Schwab M, Inaba H, Pui CH, Relling MV, Manabe A, Hori H, Schmiegelow K, Yeoh AE, Evans WE, Yang JJ (2016) NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48(4):367–373.  https://doi.org/10.1038/ng.3508 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Matimba A, Li F, Livshits A, Cartwright CS, Scully S, Fridley BL, Jenkins G, Batzler A, Wang L, Weinshilboum R, Lennard L (2014) Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics 15(4):433–447.  https://doi.org/10.2217/pgs.13.226 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  1. 1.Laboratorio de Genómica del CáncerInstituto Nacional de Medicina GenómicaMexico City, CDMXMexico
  2. 2.Servicio de ReumatologíaHospital Juárez de MéxicoMexico CityMexico
  3. 3.Unidad de Investigación en Enfermedades Endócrinas y MetabólicasHospital Juárez de MéxicoMexico City, D.F.Mexico

Personalised recommendations