Advertisement

Clinical Rheumatology

, Volume 37, Issue 4, pp 1099–1106 | Cite as

The value of high-sensitivity C-reactive protein in hand and knee radiographic osteoarthritis: data from the Dong-gu Study

  • Lihui Wen
  • Min-Ho Shin
  • Ji-Hyoun Kang
  • Yi-Rang Yim
  • Ji-Eun Kim
  • Jeong-Won Lee
  • Kyung-Eun Lee
  • Dong-Jin Park
  • Tae-Jong Kim
  • Yong-Wook Park
  • Sun-Seog Kweon
  • Young-Hoon Lee
  • Yong-Woon Yun
  • Shin-Seok Lee
Original Article
  • 152 Downloads

Abstract

Due to the inconsistent association between high-sensitivity C-reactive protein (hs-CRP) and osteoarthritis (OA), we evaluated the relationship between hs-CRP and various radiographic findings in older adults with OA. This cross-sectional study recruited 2376 participants from the population-based Dong-gu cohort. The scores of radiographic features in OA on X-rays of the knees and hands were computed using a semi-quantitative grading system. The hs-CRP levels were measured using a particle-enhanced immunonephelometry assay. Correlations showing the relationship between hs-CRP and OA were calculated using multiple linear correlation analysis. The hs-CRP levels were significantly higher in older subjects (p < 0.001), those with a higher body mass index (BMI) (p < 0.001), current smokers (p < 0.001), current alcohol drinkers (p = 0.011), those who were less physically active (p = 0.002), and those with a lower level of education (p = 0.043). After adjusting for BMI and other confounders, the total OA scores (knee, p = 0.022; hand, p = 0.029) and sclerosis score (knee, p = 0.007; hand, p = 0.030) in the knees and hands were all significantly positively correlated with hs-CRP. A significant association was also observed between hs-CRP and hand erosion score (p = 0.045), hand malalignment score (p = 0.015), and tibial attrition score (p = 0.039). In this large cross-sectional study, a higher hs-CRP level was significantly associated with radiographic OA severity. Of the various types of radiographic damage, all of sclerosis, erosion, and malalignment were significantly associated with hs-CRP levels.

Keywords

C-reactive protein Osteoarthritis Radiography 

Notes

Acknowledgements

We would like to thank the patients and their families for their participation in this study. We also thank the Health Promotion Fund, Ministry of Health & Welfare, Republic of Korea, for granting access to the Dong-gu Study.

Funding

This study was supported by AbbVie Korea, the Chonnam National University Hospital Biomedical Research Institute (CRE 16159-7), and the Chonnam National University Research Institute of Medical Sciences.

Compliance with ethical standards

This research complied with the Helsinki Declaration. Informed consent was obtained from all enrolled participants. This study was approved by the Institutional Review Board of Chonnam National University Hospital (IRB No. CNUH-2015-251).

Disclosures

None.

References

  1. 1.
    Rainbow R, Ren W, Zeng L (2012) Inflammation and joint tissue interactions in OA: implications for potential therapeutic approaches. Arthritis 2012:741582.  https://doi.org/10.1155/2012/741582 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sowers M, Jannausch M, Stein E, Jarnadar D, Hochberg M, Lachance L (2002) C-reactive protein as a biomarker of emergent osteoarthritis. Osteoarthr Cartil 10(8):595–601.  https://doi.org/10.1053/joca.2002.0800 CrossRefPubMedGoogle Scholar
  3. 3.
    Kraus VB, Stabler TV, Luta G, Renner JB, Dragomir AD, Jordan JM (2007) Interpretation of serum C-reactive protein (CRP) levels for cardiovascular disease risk is complicated by race, pulmonary disease, body mass index, gender, and osteoarthritis. Osteoarthr Cartil 15(8):966–971.  https://doi.org/10.1016/j.joca.2007.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Livshits G, Zhai G, Hart DJ, Kato BS, Wang H, Williams FMK, Spector TD (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60(7):2037–2045.  https://doi.org/10.1002/art.24598 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gungen G, Ardic F, Findikoglu G, Rota S (2012) The effect of mud pack therapy on serum YKL-40 and hsCRP levels in patients with knee osteoarthritis. Rheumatol Int 32(5):1235–1244.  https://doi.org/10.1007/s00296-010-1727-4 CrossRefPubMedGoogle Scholar
  6. 6.
    Bos SD, Suchiman HED, Kloppenburg M, Houwing-Duistermaat JJ, Hellio le Graverand MP, Seymour AB, Kroon HM, Slagboom PE, Meulenbelt I (2008) Allelic variation at the C-reactive protein gene associates to both hand osteoarthritis severity and serum high sensitive C-reactive protein levels in the GARP study. Ann Rheum Dis 67(6):877–879.  https://doi.org/10.1136/ard.2007.079228 CrossRefPubMedGoogle Scholar
  7. 7.
    Arendt-Nielsen L, Eskehave TN, Egsgaard LL, Petersen KK, Graven-Nielsen T, Hoeck HC, Simonsen O, Siebuhr AS, Karsdal M, Bay-Jensen AC (2014) Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. Arthritis Rheumatol 66(12):3317–3326.  https://doi.org/10.1002/art.38856 CrossRefPubMedGoogle Scholar
  8. 8.
    Sharif M, Shepstone L, Elson CJ, Dieppe PA, Kirwan JR (2000) Increased serum C reactive protein may reflect events that precede radiographic progression in osteoarthritis of the knee. Ann Rheum Dis 59(1):71–74.  https://doi.org/10.1136/ard.59.1.71 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sturmer T (2004) Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann Rheum Dis 63(2):200–205.  https://doi.org/10.1136/ard.2003.007674 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kerkhof HJ, Bierma-Zeinstra SM, Castano-Betancourt MC et al (2010) Serum C reactive protein levels and genetic variation in the CRP gene are not associated with the prevalence, incidence or progression of osteoarthritis independent of body mass index. Ann Rheum Dis 69(11):1976–1982.  https://doi.org/10.1136/ard.2009.125260 CrossRefPubMedGoogle Scholar
  11. 11.
    Vlad SC, Neogi T, Aliabadi P, Fontes JD, Felson DT (2011) No association between markers of inflammation and osteoarthritis of the hands and knees. J Rheumatol 38(8):1665–1670.  https://doi.org/10.3899/jrheum.100971 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E (2001) Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 60(6):619–626.  https://doi.org/10.1136/ard.60.6.619 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Takahashi M, Naito K, Abe M, Sawada T, Nagano A (2004) Relationship between radiographic grading of osteoarthritis and the biochemical markers for arthritis in knee osteoarthritis. Arthritis Res Ther 6(3):R208–R212.  https://doi.org/10.1186/ar1166 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stannus O, Jones G, Cicuttini F, Parameswaran V, Quinn S, Burgess J, Ding C (2010) Circulating levels of IL-6 and TNF-alpha are associated with knee radiographic osteoarthritis and knee cartilage loss in older adults. Osteoarthr Cartil 18(11):1441–1447.  https://doi.org/10.1016/j.joca.2010.08.016 CrossRefPubMedGoogle Scholar
  15. 15.
    Punzi L, Ramonda R, Oliviero F, Sfriso P, Mussap M, Plebani M, Podswiadek M, Todesco S (2005) Value of x protein in the assessment of erosive osteoarthritis of the hand. Ann Rheum Dis 64(6):955–957.  https://doi.org/10.1136/ard.2004.029892 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Altman RD, Gold GE (2007) Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil 15 Suppl A:A1–56.  https://doi.org/10.1016/j.joca.2006.11.009 CrossRefPubMedGoogle Scholar
  17. 17.
    Kweon SS, Shin MH, Jeong SK, Nam HS, Lee YH, Park KS, Ryu SY, Choi SW, Kim BH, Rhee JA, Zheng W, Choi JS (2014) Cohort profile: the Namwon study and the Dong-gu Study. Int J Epidemiol 43(2):558–567.  https://doi.org/10.1093/ije/dys244 CrossRefPubMedGoogle Scholar
  18. 18.
    Wen L, Shin MH, Kang JH, Yim YR, Kim JE, Lee JW, Lee KE, Park DJ, Kim TJ, Park YW, Kweon SS, Lee YH, Yun YW, Lee SS (2016) The relationships between bone mineral density and radiographic features of hand or knee osteoarthritis in older adults: data from the Dong-gu Study. Rheumatology (Oxford) 55(3):495–503.  https://doi.org/10.1093/rheumatology/kev377 Google Scholar
  19. 19.
    Feser WJ, Fingerlin TE, Strand MJ, Glueck DH (2009) Calculating average power for the Benjamini-Hochberg procedure. J Stat Theory Appl 8(3):325–352PubMedPubMedCentralGoogle Scholar
  20. 20.
    Choi J, Joseph L, Pilote L (2013) Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev 14(3):232–244.  https://doi.org/10.1111/obr.12003 CrossRefPubMedGoogle Scholar
  21. 21.
    Punzi L, Bertazzolo N, Pianon M, Michelotto M, Todesco S (1996) Soluble interleukin 2 receptors and treatment with hydroxychloroquine in erosive osteoarthritis. J Rheumatol 23(8):1477–1478PubMedGoogle Scholar
  22. 22.
    Stern AG, de Carvalho MR, Buck GA, Adler RA, Rao TP, Disler D, Moxley G, I-NODAL Network (2003) Association of erosive hand osteoarthritis with a single nucleotide polymorphism on the gene encoding interleukin-1 beta. Osteoarthr Cartil 11(6):394–402.  https://doi.org/10.1016/S1063-4584(03)00054-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, −1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthr Cartil 13(11):979–987.  https://doi.org/10.1016/j.joca.2005.03.008 CrossRefPubMedGoogle Scholar
  24. 24.
    Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Verhaar JAN, Somville J (2010) The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr Cartil 18(7):876–882.  https://doi.org/10.1016/j.joca.2010.03.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Mazieres B, Garnero P, Gueguen A et al (2006) Molecular markers of cartilage breakdown and synovitis at baseline as predictors of structural progression of hip osteoarthritis. The ECHODIAH cohort. Ann Rheum Dis 65(3):354–359.  https://doi.org/10.1136/ard.2005.037275 CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2017

Authors and Affiliations

  • Lihui Wen
    • 1
    • 2
  • Min-Ho Shin
    • 3
  • Ji-Hyoun Kang
    • 1
  • Yi-Rang Yim
    • 1
  • Ji-Eun Kim
    • 1
  • Jeong-Won Lee
    • 1
  • Kyung-Eun Lee
    • 1
  • Dong-Jin Park
    • 1
  • Tae-Jong Kim
    • 1
  • Yong-Wook Park
    • 1
  • Sun-Seog Kweon
    • 3
    • 4
  • Young-Hoon Lee
    • 5
  • Yong-Woon Yun
    • 6
  • Shin-Seok Lee
    • 1
  1. 1.Department of RheumatologyChonnam National University Medical School & HospitalGwangjuRepublic of Korea
  2. 2.Department of Immunology and RheumatologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingPeople’s Republic of China
  3. 3.Department of Preventive MedicineChonnam National University Medical SchoolGwangjuRepublic of Korea
  4. 4.Jeonnam Regional Cancer CenterChonnam National University Hwasun HospitalHwasunRepublic of Korea
  5. 5.Department of Preventive Medicine & Institute of Wonkwang Medical ScienceWonkwang University College of MedicineIksanRepublic of Korea
  6. 6.Gwangju-Jeonnam Regional Cardiocerebrovascular CenterChonnam National University HospitalGwangjuRepublic of Korea

Personalised recommendations