A photogrammetric method for laboratory-scale investigation on 3D landslide dam topography

Abstract

Topography is a crucial characteristic reflecting the stability status of a landslide dam. The methods for measuring landslide dam topography in a laboratory-scale test study are currently operator dependent, time-consuming, or only applicable to the measurement of the two-dimensional section. In this paper, a laboratory-scale photogrammetric method based on the structure from motion (SfM) technique was proposed to measure the three-dimensional (3D) topography of a landslide dam. The SfM technique, which is a revolutionary, low-cost, user-friendly computer vision technique, was employed for reconstructing a landslide dam 3D computer model. A scientific method to determine the topography parameters of a landslide dam was put forward. Meanwhile, two materials with different particle sizes were used to simulate the formation process of the landslide dam in the laboratory-scale. Then, the measurement results of the two materials were compared. Five parameters of a landslide dam topography with 100 parallel measurement results for each parameter were obtained. The results show that the SfM technique could build a high-quality 3D point cloud in a laboratory scale. The proposed method of determining the topography parameters of a landslide dam was useful and has low measurement uncertainty. The material type affected the sparse density of the point cloud and then affected the measurement uncertainty of landslide dam topography parameters. The measurement uncertainty of the gravel-type landslide dam was significantly higher than that of the sand-type landslide dam. This research contributes to promoting the application of a photogrammetric method based on the SfM technique in geotechnical engineering laboratory-scale tests.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agisoft LLC (2016) Agisoft PhotoScan Professional v. 1.2.4, available at http://www.agisoft.com/

  2. Awal R, Nakagawa H, Kawaike K, Baba Y, Zhang H (2009) Three dimensional transient seepage and slope stability analysis of landslide dam. Disaster Prevent Res Institute Ann B 52:689–696

    Google Scholar 

  3. Balletti C, Guerra F, Tsioukas V, Vernier P (2014) Calibration of action cameras for photogrammetric purposes. Sensors 14(9):17471–17490. https://doi.org/10.3390/s140917471

    Article  Google Scholar 

  4. Bolognesi M, Furini A, Russo V, Pellegrinelli A, Russo P (2015) Testing the low-cost RPAS potential in 3D cultural heritage reconstruction. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5/W4:229–235

    Article  Google Scholar 

  5. Casagli N, Ermini L (1999) Geomorphic analysis of landslide dams in the northern Apennine. Trans Jpn Geomorphol 20:219–249

    Google Scholar 

  6. Chen SC, Lin TW, Chen CY (2015) Modeling of natural dam failure modes and downstream riverbed morphological changes with different dam materials in a flume test. Eng Geol 188:148–158. https://doi.org/10.1016/j.enggeo.2015.01.016

    Article  Google Scholar 

  7. Clapuyt F, Vanacker V, Van Oost K (2016) Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 260(1):4–15. https://doi.org/10.1016/j.geomorph.2015.05.011

    Article  Google Scholar 

  8. Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068

    Article  Google Scholar 

  9. Cui P, Zhu YY, Han YS, Chen XQ, Zhuang JQ (2009) The 12 may Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation. Landslides 6(3):209–223. https://doi.org/10.1007/s10346-009-0160-9

    Article  Google Scholar 

  10. Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu river, southwestern China. Geomorphology 65:205–221. https://doi.org/10.1016/j.geomorph.2004.08.011

    Article  Google Scholar 

  11. Donnarumma A, Revellino P, Grelle G, Guadagno FM (2013) Slope angle as indicator parameter of landslide susceptibility in a geologically complex area. Landslide science and practice. Springer, pp 425–433. https://doi.org/10.1007/978-3-642-31325-7_56

  12. Ermini L, Casagli N (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surf Process Landf 28:31–47. https://doi.org/10.1002/esp.424

    Article  Google Scholar 

  13. Gai S, Da F, Dai XQ (2018) A novel dual-camera calibration method for 3D optical measurement. Opt Laser Technol 104:126–134. https://doi.org/10.1016/j.optlaseng.2017.09.025

    Article  Google Scholar 

  14. Galland O, Bertelsen HS, Guldstrand F, Girod L, Johannessen RF, Bjugger F, Burchardt S, Mair K (2016) Application of open-source photogrammetric software micmac for monitoring surface deformation in laboratory models. Earth Planet Sci Lett 121:2852–2872. https://doi.org/10.1002/2015JB012564

    Article  Google Scholar 

  15. García-Luna R, Senent S, Jurado-Piña R, Jimenez R (2019) Structure from motion photogrammetry to characterize underground rock masses: experiences from two real tunnels. Tunn Undergr Space Technol 83:262–273. https://doi.org/10.1016/j.tust.2018.09.026

    Article  Google Scholar 

  16. Jiang XG, Cui P, Chen HY, Guo YY (2017) Formation conditions of outburst debris flow triggered by overtopped natural dam failure. Landslides 14:821–831. https://doi.org/10.1007/s10346-016-0751-1

  17. Kidyaeva V, Chernomorets S, Krylenko I, Wei F, Petrakov D, Su P, Yang H, Xiong JN (2017) Modeling potential scenarios of the Tangjiashan lake outburst and risk assessment in the downstream valley. Front Earth Sci 11:579–591. https://doi.org/10.1007/s11707-017-0640-5

    Article  Google Scholar 

  18. Korup O (2005) Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: fundamental problems and approaches. Geomorphology 66:167–188. https://doi.org/10.1016/j.geomorph.2004.09.013

    Article  Google Scholar 

  19. Li L, Zhang X (2018) A new approach to measure soil shrinkage curve. Geotech Test J 42(1):1–18. https://doi.org/10.1520/GTJ20150237

    Article  Google Scholar 

  20. Liu P, Chen AY, Huang YN, Han JY, Lai JS, Kang SC, Wu TH, Wen MC, Tsai M-H (2014) A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct Syst 13(6):1065–1094. https://doi.org/10.12989/sss.2014.13.6.1065

    Article  Google Scholar 

  21. Masoodi A, Noorzad A, Tabatabai MM, Samadi A (2018) Application of short-range photogrammetry for monitoring seepage erosion of riverbank by laboratory experiments. J Hydrol 558:380–391. https://doi.org/10.1016/j.jhydrol.2018.01.051

    Article  Google Scholar 

  22. Nian TK, Wu H, Chen GQ, Zheng DF, Zhang YJ, Li DY (2018) Research progress on stability evaluation method and disater chain effect of landslide dam. Chin J Rock Mech Eng 37(8):1796–1812 (in Chinese)

    Google Scholar 

  23. Nian TK, Zhang YJ, Wu H, Chen GQ, Zheng L (2020) Runout simulation of seismic landslides using DDA with state-dependent shear strength model. Can Geotech J. https://doi.org/10.1139/cgj-2019-0312

  24. Niu ZP, Xu WL, Li NW, Xue Y, Chen HY (2012) Experimental investigation of the failure of cascade landslide dams. J Hydrodyn Ser B 24:430–441. https://doi.org/10.1016/S1001-6058(11)60264-3

    Article  Google Scholar 

  25. Pejić M (2013) Design and optimisation of laser scanning for tunnels geometry inspection. Tunn Undergr Space Technol 37:199–206. https://doi.org/10.1016/j.tust.2013.04.004

    Article  Google Scholar 

  26. Riquelme AJ, Tomás R, Abellán A (2016) Characterization of rock slopes through slope mass rating using 3D point clouds. Int J Rock Mech Min Sci 84:165–176. https://doi.org/10.1016/j.ijrmms.2015.12.008

    Article  Google Scholar 

  27. Rossi G, Tanteri L, Tofani V, Vannocci P, Moretti S, Casagli N (2018) Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15(5):1045–1052. https://doi.org/10.1007/s10346-018-0978-0

    Article  Google Scholar 

  28. Saito H, Uchiyama S, Hayakawa YS, Obanawa H (2018) Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog Earth Planet Sci 5(15):1–10. https://doi.org/10.1186/s40645-018-0169-6

    Article  Google Scholar 

  29. Salvini R, Francioni M, Riccucci S, Bonciani F, Callegari I (2013) Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the domodossola–Iselle railway, the Italian Alps. Geomorphology 185:110–122. https://doi.org/10.1016/j.geomorph.2012.12.020

    Article  Google Scholar 

  30. Sassa K, Tsuchiya S, Fukuoka H, Mikos M, Doan L (2015) Landslides: review of achievements in the second 5-year period (2009–2013). Landslides 12:213–223. https://doi.org/10.1007/s10346-015-0567-4

    Article  Google Scholar 

  31. Schmiedel T, Galland O, Breitkreuz C (2017) Dynamics of sill and laccolith emplacement in the brittle crust: role of host rock strength and deformation mode. J Geophys Res Solid Earth 122:8625–9484. https://doi.org/10.1002/2017JB014468

    Article  Google Scholar 

  32. Schmiedel T, Galland O, Haug Ø, Dumazer G, Breitkreuz C (2019) Coulomb failure of earth's brittle crust controls growth, emplacement and shapes of igneous sills, saucer-shaped sills and laccoliths. Earth Planet Sci Lett 510:161–172. https://doi.org/10.1016/j.epsl.2019.01.011

    Article  Google Scholar 

  33. Sharif YA, Elkholy M, Hanif Chaudhry M, Imran J (2015) Experimental study on the piping erosion process in earthen embankments. J Hydraul Eng ASCE 141:04015012

    Article  Google Scholar 

  34. Shrestha BB, Nakagawa H (2016) Hazard assessment of the formation and failure of the Sunkoshi landslide dam in Nepal. Nat Hazards 82:2029–2049. https://doi.org/10.1007/s11069-016-2283-3

    Article  Google Scholar 

  35. Son M, Kim M (2017) Estimation of the compressive strength of intact rock using non-destructive testing method based on total sound-signal energy. Geotech Test J 40(4):643–657. https://doi.org/10.1520/GTJ20160164

    Article  Google Scholar 

  36. Sturm P, Triggs B (1996) A factorization based algorithm for multi-image projective structure and motion. In: Buxton B, Cipolla R (eds) Computer vision — ECCV '96. Springer, Berlin Heidelberg, pp 709–720

    Google Scholar 

  37. Tacconi Stefanelli C, Segoni S, Casagli N, Catani F (2016) Geomorphic indexing of landslide dams evolution. Eng Geol 208:1–10. https://doi.org/10.1016/j.enggeo.2016.04.024

    Article  Google Scholar 

  38. Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446. https://doi.org/10.1080/01431160601024234

    Article  Google Scholar 

  39. Török Á, Barsi Á, Bögöly G, Lovas T, Somogyi Á, Görög P, Sciences ES (2018) Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling. Nat Hazards Earth Syst Sci 18:583–597. https://doi.org/10.5194/nhess-18-583-2018

    Article  Google Scholar 

  40. Tran T, Tucker-Kulesza S, Bernhardt-Barry M (2017) Determining surface roughness in erosion testing using digital photogrammetry. Geotech Test J 40:917–927. https://doi.org/10.1520/GTJ20160277

    Article  Google Scholar 

  41. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  42. White DJ, Take WA, Bolton MD and Munachen SE (2001) A deformation measurement system for geotechnical testing based on digital imaging, close-range photogrammetry, and PIV image analysis. In: Proceedings of the 15th international conference on soil mechanics and foundation engineering, Istanbul. Balkema, Rotterdam, 539–542

  43. White DJ, Take WA, Bolton MD (2003) Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53:619–631. https://doi.org/10.1680/geot.2003.53.7.619

    Article  Google Scholar 

  44. Wójcik A, Klapa P, Mitka B, Sładek J (2018) The use of the photogrammetric method for measurement of the repose angle of granular materials. Measurement 115:19–26. https://doi.org/10.1016/j.measurement.2017.10.005

    Article  Google Scholar 

  45. Wu H, Nian TK, Chen GQ, Zhao W, Li DY (2020) Laboratory-scale investigation of the 3-D geometry of landslide dams in a U-shaped valley. Eng Geol 220:105428. https://doi.org/10.1016/j.enggeo.2019.105428

    Article  Google Scholar 

  46. Yang Y, Cao SY, Yang KJ, Li WP (2015) Experimental study of breach process of landslide dams by overtopping and its initiation mechanisms. J Hydrodyn Ser B 27:872–883. https://doi.org/10.1016/S1001-6058(15)60550-9

    Article  Google Scholar 

  47. Zhang Y, Chen G, Zheng L, Li Y, Wu J (2013) Effects of near-fault seismic loadings on run-out of large-scale landslide: a case study. Eng Geol 166:216–236. https://doi.org/10.1016/j.enggeo.2013.08.002

    Article  Google Scholar 

  48. Zhao GW, Jiang YJ, Qiao JP, Yang ZJ, Ding PP (2018) Numerical and experimental study on the formation mode of a landslide dam and its influence on dam breaching. Bull Eng Geol Environ 78(4):2519–2533. https://doi.org/10.1007/s10064-018-1255-0

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the support from the National Natural Science Foundation of China

Funding

This research was supported by the National Natural Science Foundation of China (U1765107, 51879036, 51579032).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to De-feng Zheng or Ting-kai Nian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zheng, D., Zhang, Y. et al. A photogrammetric method for laboratory-scale investigation on 3D landslide dam topography. Bull Eng Geol Environ (2020). https://doi.org/10.1007/s10064-020-01870-3

Download citation

Keywords

  • Photogrammetric method
  • Structure from motion technique
  • Landslide dam disaster
  • Three-dimensional topography
  • Non-contact measurement