Skip to main content

Advertisement

Log in

Developing empirical relationships to predict loess slide travel distances: a case study on the Loess Plateau in China

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

To improve landslide hazard mapping quality, a functional relationship with travel distance prediction is essential. To obtain a more accurate empirical relationship for predicting loess slide travel distances, we developed a loess slide database for the central Loess Plateau using a combination of remote sensing image interpretations, existing datasets, and an intensive field survey. The loess slide travel distance was concentrated within less than 200 m, according to a cumulative frequency analysis. Our results reveal that the loess slide volume, slope height, and slope inclination of the sliding area control the travel distance, and this relation is well-described by a power law function. Furthermore, statistical analysis suggested that the equivalent coefficient of friction decreases with an increase in loess slide volume but increases with an increase in slope inclination. We compared the prediction performances of four empirical relationships proposed in this study using the mean absolute percentage error and Theil inequality coefficient methods. We discovered that the empirical relationship with three independent variables can more accurately predict the loess slide travel distance than the relationships with one or two independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1):69–80

    Article  Google Scholar 

  • Budetta P, De Riso R (2004) The mobility of some debris flows in pyroclastic deposits of the northwestern Campanian region (southern Italy). Bull Eng Geol Environ 63(4):293–302

    Article  Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc A 225(1160):49–63

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Article  Google Scholar 

  • Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3(6):523–538

    Article  Google Scholar 

  • Cui Y, Zhou X, Guo C (2017a) Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall. J Mt Sci 14(3):417–431

    Article  Google Scholar 

  • Cui Y, Chan D, Nouri A (2017b) Coupling of solid deformation and pore pressure for undrained deformation—a discrete element method approach. Int J Numer Anal Methods Geomech 41(18):1943–1961

    Article  Google Scholar 

  • Cui Y, Chan D, Nouri A (2017c) Discontinuum modelling of solid deformation pore water diffusion coupling. Int J Geomech (ASCE) 17(8):04017033

    Article  Google Scholar 

  • Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4):269–288

    Article  Google Scholar 

  • Chen HX, Zhang LM, Zhang S, Xiang B, Wang XF (2013) Hybrid simulation of the initiation and runout characteristics of a catastrophic debris flow. J Mt Sci 10(2):219–232

    Article  Google Scholar 

  • Chen HX, Zhang LM, Gao L, Zhu H, Zhang S (2015) Presenting regional shallow landslide movement on three-dimensional digital terrain. Eng Geol 195:122–134

    Article  Google Scholar 

  • Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24

    Article  Google Scholar 

  • Davis, P.A., Goodrich, M.T., 1990. A proposed strategy for the validation of ground-water flow and solute transport models. Technical Report, Sandia National Labs., Albuquerque, NM (USA)

  • Derbyshire E, Wang J, Jin Z et al (1991) Landslides in the Gansu loess of China. Catena Suppl 20:119–145

    Google Scholar 

  • Derbyshire E, Van Asch T, Billard A et al (1995) Modelling the erosional susceptibility of landslide catchments in thick loess: Chinese variations on a theme by Jan de Ploey. Catena 25:315–331

    Article  Google Scholar 

  • Derbyshire E (2001) Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci Rev 54(1):231–260

    Article  Google Scholar 

  • Devoli G, De Blasio FV, Elverhøi A, Høeg K (2009) Statistical analysis of landslide events in central America and their run-out distance. Geotech Geol Eng 27(1):23–42

    Article  Google Scholar 

  • Dijkstra TA, Wasowski J, Winter MG, Meng XM (2014) Introduction to geohazards of Central China. Q J Eng Geol Hydrogeol 47(3):195–199

    Article  Google Scholar 

  • Finlay PJ, Mostyn GR, Fell R (1999) Landslide risk assessment: prediction of travel distance. Can Geotech J 36(3):556–562

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1):62–72

    Article  Google Scholar 

  • Frechen M, Oches EA, Kohfeld KE (2003) Loess in Europe—mass accumulation rates during the last glacial period. Quat Sci Rev 22(18):1835–1857

    Article  Google Scholar 

  • Guo D, Hamada M, He C, Wang Y, Zou Y (2014) An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 11(2):281–291

    Article  Google Scholar 

  • Guo XJ, Cui P, Li Y (2013) Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia Ravine, Yunnan, China. J Mt Sci 10(2):305–314

    Article  Google Scholar 

  • Hattanji T, Moriwaki H (2009) Morphometric analysis of relic landslides using detailed landslide distribution maps: implications for forecasting travel distance of future landslides. Geomorphology 103(3):447–454

    Article  Google Scholar 

  • Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21(4):663–677

    Article  Google Scholar 

  • Hungr O (1995) Amodel for the movement analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Article  Google Scholar 

  • Huang Y, Zhang W, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zurich, p 218

  • Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res Solid Earth 97(B6):9063–9071

    Article  Google Scholar 

  • Hunter G, Fell R (2003) Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Can Geotech J 40(6):1123–1141

    Article  Google Scholar 

  • Howard KA (1973) Avalanche mode of motion. Implications from lunar examples. Science 180:1052–1054

    Article  Google Scholar 

  • Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140

    Article  Google Scholar 

  • Kang C, Chan D (2017) Modelling of entrainment in debris flow analysis for dry granular material. Int J Geomech (ASCE) 17(10):1–20

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3):301–331

    Article  Google Scholar 

  • Leuthold RM (1975) On the use of Theil's inequality coefficients. Am J Agric Econ 57(2):344–346

    Article  Google Scholar 

  • Liu TS (1985) Loess and environment. China Ocean Press, Beijing

    Google Scholar 

  • McKinnon M (2010) Landslide runout: statistical analysis of physical characteristics and model parameters. University of British Columbia

  • Okura Y, Kitahara H, Sammori T, Kawanami A (2000) The effects of rockfall volume on travel distance. Eng Geol 58:109–124

    Article  Google Scholar 

  • Okura Y, Kitahara H, Kawanami A, Kurokawa U (2003) Topography and volume effects on travel distance of surface failure. Eng Geol 67(3):243–254

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J NumerAnal Methods Geomech 33(2):143–172

    Article  Google Scholar 

  • Qiu H, Regmi AD, Cui P, Cao M, Lee J, Zhu X (2016) Size distribution of loess slides in relation to local slope height within different slope morphologies. CATENA 145:155–163

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD et al (2017) Slope height and slope gradient controls on the loess slide size within different slip surfaces. Phys Geogr 38(4):303–317

    Article  Google Scholar 

  • Qiu H, Cui P, Regmi AD et al (2018) The effects of slope length and slope gradient on the size distributions of loess slides: field observations and simulations. Geomorphology 300:69–76

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5(4):231–236

    Article  Google Scholar 

  • Sassa K (1988) Geotechnical model for the motion of landslides (special lecture). Proceedings of the 5th International Symposium on Landslides. Lausanne:37–56

  • Sassa K, Fukuoka H, Wang F, Wang GH (2005) Dynamic properties of earthquake-induced large-scale rapid landslides within past landslide masses. Landslides 2:125–134

    Article  Google Scholar 

  • Shi JS, Wu LZ, Wu SR, Li B, Wang T, Xin P (2016) Analysis of the causes of large-scale loess landslides in Baoji, China. Geomorphology 264:109–117

    Article  Google Scholar 

  • Shreve RL (1966) Sherman landslide, Alaska. Science 154:1639–1643

    Article  Google Scholar 

  • Theil H (1966) Applied economic forecasting. Rand-McNally & Co., Chicago

    Google Scholar 

  • Tang C, Zhu J, Chang M, Ding J, Qi X (2012) An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quat Int 250:63–73

    Article  Google Scholar 

  • Takahashi T (1991) Debris flow. Balkema, Rotterdam

    Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18(1):135–150

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizck RJ (eds) Landslides; analysis and control, special report, vol. 176. Transportation Research Board. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Xu L, Dai FC, Tham LG, Zhou YF, Wu CX (2012) Investigating landslide-related cracks along the edge of two loess platforms in Northwest China. Earth Surf Process Landf 37(10):1023–1033

    Article  Google Scholar 

  • Yang C, Zhang J, Zhang M (2013) A prediction model for horizontal run-out distance of landslides triggered by Wenchuan earthquake. Earthq Eng Eng Vib 12(2):201–208

    Article  Google Scholar 

  • Zhan W, Fan X, Huang R et al (2017) Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area. Nat Hazards Earth Syst Sci 17(6):833

    Article  Google Scholar 

  • Zhang MS, Liu J (2010) Controlling factors of loess landslides in western China. Environ Earth Sci 59(8):1671–1680

    Article  Google Scholar 

  • Zhang F, Pei X, Chen W, Liu G, Liang S (2014) Spatial variation in geotechnical properties and topographic attributes on the different types of shallow landslides in a loess catchment, China. Eur J Environ Civil Eng 18(4):470–488

    Google Scholar 

  • Zhang F, Kang C, Chan D, Zhang X, Pei X, Peng J (2017) A study of a flowslide with significant entrainment in loess areas in China. Earth Surf Process Landf 42(14):2295–2305

    Article  Google Scholar 

  • Zou Z, Xiong C, Tang H et al (2017) Prediction of landslide runout based on influencing factor analysis. Environ Earth Sci 76(21):723

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 41771539) and International Partnership Program of Chinese Academy of Sciences (Grant no. 131551KYSB20160002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Cui, P., Hu, S. et al. Developing empirical relationships to predict loess slide travel distances: a case study on the Loess Plateau in China. Bull Eng Geol Environ 77, 1299–1309 (2018). https://doi.org/10.1007/s10064-018-1328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1328-0

Keywords

Navigation