Skip to main content

Advertisement

Log in

Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The physical, mechanical and morphological properties of a rock undergo substantial change when exposed to the extreme temperatures that are encountered in processes such as nuclear waste disposal, underground coal gasification (UCG) and building fires. An attempt has been made in this article to study the different physical and morphological changes that occur within Indian sandstone due to thermal treatment. Tests were performed on a thermally treated air-cooled and non-cooled set of samples in order to observe the change in the physico-morphological properties. Heating has a profound effect on the physical properties such as density, porosity and compression wave velocity (VP), which have been further explained by thin-section, X-ray diffraction (XRD) and scanning electron microscope (SEM) studies. Thermal analyses such as thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were performed to observe the chemical changes occurring in the specimen. Since Dholpur sandstone is a quartz-dominant rock, the thermally induced chemical degradation is minimal in nature. DTA studies revealed the quartz inversion to occur at 579.19 °C. Structural changes that are caused due to the random alignment and the thermal anisotropic behaviour of different minerals lead to microcracking, thereby affecting the physical properties. This study will provide an understanding of the thermal behaviour of rocks and the relationship of the thermal behaviour with physico-mechanical behaviour. The study can prove useful while designing structures in processes such as UCG, nuclear waste disposal, deep mining and geothermal energy; the study can also enable the formation of a protocol to restore the structural integrity and aesthetic value of fire-damaged buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Blenkinsop TG (2000) Deformation microstructures and mechanisms in minerals and rocks. Springer, Dordrecht

    Google Scholar 

  • Brotóns V, Tomás R, Ivorra S, Alarcón JC (2013) Temperature influence on the physical and mechanical properties of a porous rock: san Julian’s calcarenite. Eng Geol 167:117–127. https://doi.org/10.1016/j.enggeo.2013.10.012

    Article  Google Scholar 

  • CGWB (2010) Groundwater scenario, Dholpur District-western region of Jaipur. Ministry of Water Resources, Government of India, Jaipur

    Google Scholar 

  • Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22:1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002

    Article  Google Scholar 

  • Chakrabarti B, Yates T, Lewry A (1996) Effect of fire damage on natural stonework in buildings. Constr Build Mater 10:539–544

    Article  Google Scholar 

  • Clark SP (1966) Handbook of physical constants, vol 97. Geological Society of America, Boulder

    Google Scholar 

  • Das R, Sirdesai N, Singh T (2017) Analysis of Deformational Behavior of Circular Underground Opening in Soft Ground Using Three-Dimensional Physical Model. In: 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA. American Rock Mechanics Association

  • Delle Piane C, Arena A, Sarout J, Esteban L, Cazes E (2015) Micro-crack enhanced permeability in tight rocks: an experimental and microstructural study. Tectonophysics 665:149–156. https://doi.org/10.1016/j.tecto.2015.10.001

    Article  Google Scholar 

  • Den’gina NI, Kazak VN, Pristash VV (1993) Changes in rocks at high-temperatures. J Min Sci+ 29:472–477

    Article  Google Scholar 

  • DMG-Rajasthan (2006) Sandstone-Rajasthan. www.dmg-raj.org/sandstone.html. Accessed 15 August 2015

  • Fredrich JT, Wong T-f (1986) Micromechanics of thermally induced cracking in three crustal rocks. J Geophys Res Solid Earth 91:12743–12764. https://doi.org/10.1029/JB091iB12p12743

    Article  Google Scholar 

  • Freire-Lista DM, Fort R, Varas-Muriel MJ (2016) Thermal stress-induced microcracking in building granite. Eng Geol 206:83–93. https://doi.org/10.1016/j.enggeo.2016.03.005

    Article  Google Scholar 

  • Frost RL, Vassallo AM (1996) The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clay Clay Miner 44:635–651

    Article  Google Scholar 

  • Glover P et al (1995) α/β phase transition in quartz monitored using acoustic emissions. Geophys J Int 120:775–782

    Article  Google Scholar 

  • González-Gómez WS, Quintana P, May-Pat A, Avilés F, May-Crespo J, Alvarado-Gil JJ (2015) Thermal effects on the physical properties of limestones from the Yucatan peninsula. Int J Rock Mech Mining Sci 75:182–189. https://doi.org/10.1016/j.ijrmms.2014.12.010

    Article  Google Scholar 

  • Hajpál M (1999) Burning effect on sandstones of historic buildings and their petrophysical and mineralogical studies period Polytech. Civ Eng 43:207–218

    Google Scholar 

  • Hajpál M (2002) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38:373–382

    Article  Google Scholar 

  • Hajpál M, Török Á (2004) Mineralogical and colour changes of quartz sandstones by heat. Environ Geol 46:311–322. https://doi.org/10.1007/s00254-004-1034-z

  • Hatakeyama T, Liu Z (1998) Handbook of thermal analysis. Wiley, Hoboken

    Google Scholar 

  • Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. In: International journal of rock mechanics and mining sciences & Geomechanics abstracts, vol 2. Elsevier, Amsterdam, pp 125–134

    Google Scholar 

  • Homand-Etienne F, Troalen J-P (1984) Behaviour of granites and limestones subjected to slow and homogeneous temperature changes. Eng Geol 20:219–233

    Article  Google Scholar 

  • Huotari T, Kukkonen I (2004) Thermal expansion properties of rocks: literature survey and estimation of thermal expansion coefficient for Olkiluoto mica gneiss. Geological Survey of Finland, Finland

    Google Scholar 

  • ISRM (1981) Rock characterization testing and monitoring - ISRM suggested methods. Pergamon Press for the Commission of Testing Methods, Oxford

    Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, Hoboken

    Google Scholar 

  • Jansen DP, Carlson SR, Young RP, Hutchins DA (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in lac du bonnet granite. J Geophys Res Solid Earth 98:22231–22243. https://doi.org/10.1029/93JB01816

    Article  Google Scholar 

  • Keller FJ, Gettys WE, Skoke MJ (1993) Physics, classical and modern, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Kerr R, Needham J, Wood N (2004) Science and civilisation in China: vol 5. Chemistry and chemical technology, part 12, ceramic technology. Cambridge University Press, Cambridge

    Google Scholar 

  • Keshavarz M, Pellet FL, Loret B (2010) Damage and changes in mechanical properties of a gabbro thermally loaded up to 1,000°C. Pure Appl Geophys 167:1511–1523. https://doi.org/10.1007/s00024-010-0130-0

    Article  Google Scholar 

  • Mahanta B, Singh TN, Ranjith PG (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. https://doi.org/10.1016/j.enggeo.2016.06.008

    Article  Google Scholar 

  • Mahanta B, Sirdesai N, Singh TN, Ranjith PG (2017) Experimental study of strain rate sensitivity to fracture toughness of rock using flattened Brazilian disc. Procedia Eng 191:256–262. https://doi.org/10.1016/j.proeng.2017.05.179

    Article  Google Scholar 

  • Mao X, Zhang L, Liu R, Ma D (2014) Mechanical and thermal damage properties of sandstone at high temperatures. Electron J Geotech Eng 19:3137–3150

    Google Scholar 

  • Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503:52–59. https://doi.org/10.1016/j.tecto.2010.09.027

    Article  Google Scholar 

  • Nasseri MHB, Tatone BSA, Grasselli G, Young RP (2009) Fracture toughness and fracture roughness interrelationship in thermally treated westerly granite. Pure Appl Geophys 166:801–822. https://doi.org/10.1007/s00024-009-0476-3

    Article  Google Scholar 

  • Peng J, Rong G, Cai M, Yao M-D, Zhou C-B (2016) Physical and mechanical behaviors of a thermal-damaged coarse marble under uniaxial compression. Eng Geol 200:88–93. https://doi.org/10.1016/j.enggeo.2015.12.011

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4615-9974-6

    Book  Google Scholar 

  • Plevová E, Vaculíková L, Kožušníková A, Daněk T, Pleva M, Ritz M, Simha Martynková G (2011) Thermal study of sandstones from different Czech localities. J Therm Anal Calorim 103:835–843

    Article  Google Scholar 

  • Redfern S (1987) The kinetics of dehydroxylation of kaolinite. Clay Miner 22:447–456

    Article  Google Scholar 

  • Schacht C (2004) Refractories handbook vol 178. CRC, Boca Raton

    Book  Google Scholar 

  • Sharma K, Roy D, Singh P, Sharma L, Singh T (2017a) Parametric study of factors affecting fluid flow through a fracture. Arab J Geosci 10:362

  • Sharma L, Singh R, Umrao R, Sharma K, Singh T (2017b) Evaluating the modulus of elasticity of soil using soft computing system. Eng Comput 33:497–507

  • Siegesmund S, Ullemeyer K, Weiss T, Tschegg KE (2000) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182. https://doi.org/10.1007/s005310050324

    Article  Google Scholar 

  • Siratovich PA, Villeneuve MC, Cole JW, Kennedy BM, Bégué F (2015) Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. Int J Rock Mech Min Sci 80:265–280. https://doi.org/10.1016/j.ijrmms.2015.09.023

    Article  Google Scholar 

  • Sirdesai NN, Singh R, Singh TN, Ranjith PG (2015) Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project. Proc Int Assoc Hydrol Sci 372:455–462. https://doi.org/10.5194/piahs-372-455-2015

    Google Scholar 

  • Sirdesai NN, Mahanta B, Singh TN, Ranjith PG (2016a) Elastic modulus of thermally treated fine grained sandstone using non-contact laser extensometer. Paper presented at the Recent Advances in Rock Engineering (RARE 2016a), Bengaluru, India

  • Sirdesai NN, Singh TN, Ranjith PG, Singh R (2016b) Effect of varied durations of thermal treatment on the tensile strength of red sandstone. Rock Mech Rock Eng 1–9. https://doi.org/10.1007/s00603-016-1047-4

  • Sirdesai NN, Singh TN, Ranjith PG (2017) Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – a comparative study. Eng Geol. https://doi.org/10.1016/j.enggeo.2017.06.010

  • Smykatz-Kloss W (2012) Differential thermal analysis: application and results in mineralogy, vol 11. Springer, Berlin

    Google Scholar 

  • Somerton WH (1992) Thermal properties and temperature-related behavior of rock/fluid systems vol 37. Elsevier, Amsterdam

  • Tian H, Kempka T, Xu N-X, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45:1113–1117. https://doi.org/10.1007/s00603-012-0228-z

    Article  Google Scholar 

  • Tian H, Ziegler M, Kempka T (2014) Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C. Int J Rock Mech Min Sci 70:144–153. https://doi.org/10.1016/j.ijrmms.2014.04.014

    Article  Google Scholar 

  • UNESCO (2015) India-UNESCO World Heritage Centre. http://whc.unesco.org/en/statesparties/in. Accessed 1 May 2016

  • Wu G, Liu S (2008) Research on ultrasonic characteristics of sandstone after heating to high temperature boundaries of rock mechanics. Taylor & Francis, London, pp 207–211

    Google Scholar 

  • Yates B (1972) Thermal expansion. Monographs in low-temperature physics, 1st edn. Springer, New York. https://doi.org/10.1007/978-1-4899-5448-0

    Google Scholar 

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014

    Article  Google Scholar 

  • Yeskis D, van Groos AK, Guggenheim S (1985) The dehydroxylation of kaolinite. Am Mineral 70:159–164

    Google Scholar 

  • You L, Kang Y (2009) Effects of thermal treatment on physical property of tight rocks. Prog Geophys 24:1850–1854

    Google Scholar 

  • Zhang Y, Zhang X, Zhao YS (2005) Process of sandstone thermal cracking. Chin J Geophys 48:722–726

    Article  Google Scholar 

  • Zhao Z (2015) Thermal influence on mechanical properties of granite: a microcracking perspective. Rock Mech Rock Eng 49:747–762. https://doi.org/10.1007/s00603-015-0767-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Sirdesai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirdesai, N.N., Mahanta, B., Ranjith, P.G. et al. Effects of thermal treatment on physico-morphological properties of Indian fine-grained sandstone. Bull Eng Geol Environ 78, 883–897 (2019). https://doi.org/10.1007/s10064-017-1149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1149-6

Keywords

Navigation