Skip to main content

Advertisement

Log in

An ensemble landslide hazard model incorporating rainfall threshold for Mt. Umyeon, South Korea

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In this study, a new ensemble method was developed to assess landslide hazard models in Mt. Umyeon, South Korea, using the results of a physically based model as a conditioning factor (CF). Hydrological conditions were obtained from the national-scale rainfall threshold. To incorporate rainfall threshold in landslide initiation, national landslide inventory data were used to prepare I-D and C-D thresholds. A series of factor of safety (FS) distribution maps were prepared using a physically based model with a 12-h cumulative rainfall threshold. We created an ensemble model to overcome limitations in the physically based model, which could not incorporate important environmental variables such as hydrology, forest, soil, and geology. To determine the effect of CFs on landslide distribution, spatial data layers of elevation, drainage proximity, soil drainage characters, stream power index, sediment transport index, topographic wetness index, forest type, forest density, tree diameter, soil type geology, and the FS distribution map were analyzed in a maximum entropy-based machine learning algorithm. Validation was performed with a receiver operating characteristic curve (ROC). The ROC showed 65.9% accuracy in the physically based model, whereas the ensemble model had higher accuracy (79.6%) and a prediction rate of 89.7%. The ensemble landslide hazard model is a new approach, incorporating the FS distribution map into the available independent environmental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Akgün A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2012) An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34

    Article  Google Scholar 

  • Aleotti P (2003) A warning system for rainfall-induced shallow failures. Eng Geol 73(3):247–265

    Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7(3):259–272

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci J 24(1):43–69

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10(3):447–458

    Article  Google Scholar 

  • Brunsden D, Prior DB (1984) Slope stability. Wiley, New York, p 620

    Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geogr Ann Ser B:23–27

  • Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45(1):55–72

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Geographical information systems in assessing natural hazards. Springer, Netherlands, p 135–175

  • Chen CY, Chen TC, Yu FC, Yu WH, Tseng CC (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol 47(5):715–724

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2(4):329–342

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472

    Article  Google Scholar 

  • Convertino M, Troccoli A, Catani F (2013) Detecting fingerprints of landslide drivers: a MaxEnt model. J Geophys Res Earth Surf 118(3):1367–1386

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54(2):311–324

    Article  Google Scholar 

  • Dietrich WE, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process 9(3–4):383–400

    Article  Google Scholar 

  • Dou J et al (2015) Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS One 10(7):e0133262

    Article  Google Scholar 

  • Dudík M, Phillips SJ, Schapire RE (2007) Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. J Mach Learn Res 8:1217–1260

    Google Scholar 

  • Dyke J, Kleidon A (2010) The maximum entropy production principle: its theoretical foundations and applications to the earth system. Entropy 12(3):613–630

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (west Black Sea region, Turkey). Eng Geol 75(3):229–250

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66(1):327–343

    Article  Google Scholar 

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the pays d'Auge plateau hillslopes (Normandy, France). Nat Hazards Earth Syst Sci 14(3):569–588

    Article  Google Scholar 

  • Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157(6–8):1059–1079

    Article  Google Scholar 

  • Gökceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1):147–161

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1):181–216

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98(3–4):239–267

    Article  Google Scholar 

  • Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2(2):97–105

    Article  Google Scholar 

  • Iida A (1984) Hydrologic method of estimation of topographic effect on saturated throughflow. Trans Jpn Geophys Union 5(1):1–12

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the north Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3):137–156

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439

    Article  Google Scholar 

  • Kawabata D, Bandibas J (2009) Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN). Geomorphology 113(1):97–109

    Article  Google Scholar 

  • Keefer DK et al (1987) Real-time landslide warning during heavy rainfall. Science 238(4829):921–926

    Article  Google Scholar 

  • Korean Geotechnical Society (2011) Research contract report: addition and complement causes survey of Mt. Woomyeon Landslide. Koran Geotechnical Society, Seoul, 268p

  • Korean Society of Civil Engineering (2012) Research contract report: causes survey and restoration work of Mt. Woomyeon Landslide. Korean Society of Civil Engineers, Seoul, 435p

  • Lanni C, McDonnell JJ, Rigon R (2011) On the relative role of upslope and downslope topography for describing water flow path and storage dynamics: a theoretical analysis. Hydrol Proc 25(25):3909–3923

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71(3):289–302

    Article  Google Scholar 

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(4):485–495

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2):311–320

    Article  Google Scholar 

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1):165–172

    Article  Google Scholar 

  • Menard S (1995) Applied logistic regression analysis. Sage, Thousand Oaks

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5(1):3–30

    Article  Google Scholar 

  • National Forestry Cooperative Federation (2011) Official archive for restoration work of Mt. Woomyeon landslide

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97(3):171–191

    Article  Google Scholar 

  • O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  • Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Article  Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36(3–4):325–334

    Article  Google Scholar 

  • Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat Hazards Earth Syst Sci 13(11):2833–2849

    Article  Google Scholar 

  • Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps–case study Lower Austria. Nat Hazards Earth Syst Sci 14(1):95–118

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2014) Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Nat Hazards 72(2):1189–1217

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2016a) Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. Catena 140:125–139

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2016b) Spatial data analysis and application of evidential belief functions to shallow landslide susceptibility mapping at Mt. Umyeon, Seoul, Korea. Bull Eng Geol Environ 1–17. Published online first

  • Pradhan AMS, Kim YT (2017) GIS-based landslide susceptibility model considering effective contributing area for drainage time. Geocarto Int. doi:10.1080/10106049.2017.1303089 online first

    Article  Google Scholar 

  • Pradhan AMS, Kang HS, Lee S, Kim YT (2016) Spatial model integration for shallow landslide susceptibility and its runout using a GIS-based approach in Yongin, Korea. Geocarto Int 1–22

  • Rosi A, Segoni S, Catani F, Casagli N (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J Geogr Sci 22(4):617–629

    Article  Google Scholar 

  • Safaei M, Omar H, Yousof ZB, Ghiasi V (2010) Applying geospatial technology to landslide susceptibility assessment. Electron J Geotech Eng 15:677–696

    Google Scholar 

  • Safeland (2012) Statistical and empirical models for prediction of precipitation-induced landslides, Deliverable D1.5

  • Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia. Expert Syst Appl 38(7):8208–8219

    Article  Google Scholar 

  • Shahabi H, Hashim M, Ahmad BB (2015) Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environ Earth Sci 73(12):8647–8668

    Article  Google Scholar 

  • Sidle RC, Pearce AJ, O'Loughlin CL (1985) Hillslope stability and land use. American geophysical union, Washington, D.C.

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  Google Scholar 

  • Tsangaratos P, Ilia I (2016) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi perfection, Greece. Landslides 13(2):305–320

    Article  Google Scholar 

  • Turkington T, Ettema J, Van Westen CJ, Breinl K (2014) Empirical atmospheric thresholds for debris flows and flash floods in the southern French alps. Nat Hazards Earth Syst Sci 14(6):1517–1530

    Article  Google Scholar 

  • Van Westen CJ (2004) Geo-information tools for landslide risk assessment: an overview of recent developments. In: Landslides: evaluation and stabilization. CRC Press, Boca Raton, p 39–56

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Statistics and computing. Springer, New York

    Google Scholar 

  • Wu CH, Chen SC, Chou HT (2011) Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping watershed, Taiwan. Eng Geol 123(1):13–21

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12

    Article  Google Scholar 

  • Yune CY, Chae YK, Paik J, Kim G, Lee SW, Seo HS (2013) Debris flow in metropolitan area—2011 Seoul debris flow. J Mount Sci 10(2):199–206

    Article  Google Scholar 

  • Ziemer RR (1981) The role of vegetation in the stability of forested slopes. In: Proceedings of the international union of forest research organisations. Kyoto, Japan, p 297–308

Download references

Acknowledgements

This research was supported by the Public Welfare and Safety Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (grant No. 2012M3A2A1050977), a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA) and the Brain Korea 21 Plus (BK 21 Plus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, A.M.S., Kang, HS., Lee, JS. et al. An ensemble landslide hazard model incorporating rainfall threshold for Mt. Umyeon, South Korea. Bull Eng Geol Environ 78, 131–146 (2019). https://doi.org/10.1007/s10064-017-1055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1055-y

Keywords

Navigation