Skip to main content

Advertisement

Log in

Geometrical and structural setting of landslide dams of the Central Alborz: a link between earthquakes and landslide damming

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The combination of remote sensing observations, geological field investigations and geomorphological mapping and measurements along with faults and landslides inventory were employed to identify the landslide-dams of Alborz Mountain belt in northern Iran. The study comprises main landslide-dams of Central Alborz, including those with saturated and dried lakes. Valasht, Chort, Shoormast, Evan, Tar, Havir and Imamza-e-Ali were the lakes discovered as being formed by a landslide-damming process. Several other ancient lakes were identified as the remnants of breached and dried landslide-dams. The geometry and structural setting of each case is described; however, more investigations are required to evaluate the potential hazards for downstream populations. Most of these cases are believed to be co-seismic or earthquake-induced landslide dams formed due to large (M: ~7.0) known historical and derived pre-historic earthquakes. This paper emphasizes the relationship between active faulting, fault valleys and slope instability that leads to fault valley blockage by landslide. The recommendation from this study is that more consideration of active structures is needed in tectonically active regions, where the fault damage zones are more susceptible to slope instability due to progressive deformation and earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

(Photograph courtesy of M. Abdolah-Beigi, Sep. 2011)

Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

(original photograph courtesy of M. Bathae Feb. 2014)

Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. J Geodyn 21:1–33. doi:10.1016/0264-3707(95)00009-7

    Article  Google Scholar 

  • Allen MB, Ghassemi MR, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25(5):659–672

    Article  Google Scholar 

  • Allenbach P (1966) Geologie und Petrographie des Damavand und seiner Umgebung (Zentral-Elburz), Iran (Doctoral dissertation, PhD Thesis, ETH Zürich, Nr. 3885, 0000

  • Allenbach P (1970) Geology and petrography of Mt. Damavand and its environment (Central Alborz), Iran (No. 17). Geological Survey of Iran, Tehran

    Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, London

    Google Scholar 

  • Annells RS, Arthurton RS, Bazley RAB, Davies RG, Hamedi MAR, Rahimzadeh F (1985) Geological quadrangle map of Qazvin-Rasht (1:250000). Geological Survey of Iran, Tehran

    Google Scholar 

  • Baharfiruzi Kh, Shafeii AR, Azhdari A, Karimi HR, Pirouz M (2004) Geology map of Javaherdeh, 1:100000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Berberian M (1994) Natural hazards and the first earthquake catalogue of Iran. International Institute of Earthquake Engineers and Seismology, Tehran

    Google Scholar 

  • Berberian M, Walker R (2010) The Rudbār Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophys J Int 182(3):1577–1602

    Article  Google Scholar 

  • Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seismol Soc Am 89(1):120–139

    Google Scholar 

  • Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23(2):563–584

    Article  Google Scholar 

  • Berberian M, Qorashi M, Argang R, Mohajer AA (1985) Seismotectonics and earthquake-fault hazard investigation in the Tehran Region, contribution to the seismotectonics of Iran, Part V Report 56. Geological Survey of Iran, Tehran

    Google Scholar 

  • Berberian M, Qorashi M, Jackson JA, Priestley K, Wallace T (1992) The Rudbar–Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance. Bull Seismol Soc Am 82(4):1726–1755

    Google Scholar 

  • Bout P, Derruau M (1961) Le Demavend. CNRS Paris Mém Doc 8:9–102

    Google Scholar 

  • Butt MJ, Umar M, Qamar R (2013) Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in Northern Pakistan. Nat Hazard 65(1):241–254

    Article  Google Scholar 

  • Chen Y, Aitchison JC, Zong Y, Li SH (2016) OSL dating of past lake levels for a large dammed lake in southern Tibet and determination of possible controls on lake evolution. Earth Surf Proc Landf 41(11):1467–1476

    Article  Google Scholar 

  • Clague JJ, Evans SG (1994) Formation and failure of natural dams. Geol Sur Can Bull 464:35

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100(7):1054–1068

    Article  Google Scholar 

  • Costa JE, Schuster RL (1991) Documented historical landslide dams from around the world (No. 91-239). US Geological Survey, Reston

    Google Scholar 

  • Cowie PA, Scholz CH (1992) Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J Struct Geol 14(10):1133–1148

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides: investigation and mitigation. Chapter 3-landslide types and processes. Transportation research board special report 247

  • Dai FC, Lee CF, Deng JH, Tham LG (2005) The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China. Geomorphology 65(3):205–221

    Article  Google Scholar 

  • Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40(4):883–895

    Article  Google Scholar 

  • Djamour Y, Vernant P, Bayer R, Nankali HR, Ritz JF, Hinderer J, Hatam Y, Luck B, Le Moigne N, Sedighi M, Khorrami F (2010) GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophys J Int 183(3):1287–1301

    Article  Google Scholar 

  • Dong JJ, Lai PJ, Chang CP, Yang SH, Yeh KC, Liao JJ, Pan YW (2014) Deriving landslide dam geometry from remote sensing images for the rapid assessment of critical parameters related to dam-breach hazards. Landslides 11(1):93–105

    Article  Google Scholar 

  • Ehteshami-Moinabadi M (2006) Introducing the hazard of Valasht Lake in the Central Alborz: brief description of a landslide dam triggered by 958 earthquake. In: 10th conference of the Geological Society of Iran. Tarbiat Modares University, Tehran

  • Ehteshami-Moinabadi M(2007) Valasht Lake, a Landslide Dam Triggered by Historical Earthquake, Alborz Mountains Belt, North Iran. In: Fifth international conference on seismology and earthquake engineering, IIEES, Tehran

  • Ehteshami-Moinabadi M (2014) Fault zone migration by footwall shortcut and recumbent folding along an inverted fault: example from the Mosha Fault, Central Alborz, Northern Iran. Can J Earth Sci 51(9):825–836

    Article  Google Scholar 

  • Ehteshami-Moinabadi M, Yassaghi A (2007) Geometry and kinematics of the Mosha Fault, south central Alborz range, Iran: an example of basement involved thrusting. J Asian Earth Sci 29:928–938. doi:10.1016/j.jseaes.2006.07.002

    Article  Google Scholar 

  • Ehteshami-Moinabadi M, Yassaghi A, Amini A (2012) Mesozoic basin inversion in Central Alborz, evidence from the Taleqan–Gajereh–Lar Paleograben. J Geope 2(2):43–63

    Google Scholar 

  • Emami MH, Babakhani A (1997) Geological map of Damavand scale 1:100,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Ermini L, Casagli N (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surf Proc Landf 28(1):31–47

    Article  Google Scholar 

  • Fan X, van Westen CJ, Korup O, Gorum T, Xu Q, Dai F, Huang R, Wang G (2012) Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China. Geomorphology 171:58–68

    Article  Google Scholar 

  • Fan X, Rossiter DG, Westen CJ, Xu Q, Görüm T (2014) Empirical prediction of coseismic landslide dam formation. Earth Surf Proc Landf 39(14):1913–1926

    Article  Google Scholar 

  • Ghassemi MR, Fattahi M, Landgraf A, Ahmadi M, Ballato P, Tabatabaei SH (2014) Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, Northern Iran. Tectonophysics 622:81–95

    Article  Google Scholar 

  • Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006) Late Cenozoic shortening in the west-central Alborz Mountain, northern Iran, by combined conjugate strike slip and thin-skinned deformation. Geosphere 2:35–52

    Article  Google Scholar 

  • Hancox GT, McSaveney MJ, Manville VR, Davies TR (2005) The October 1999 Mt Adams rock avalanche and subsequent landslide dam-break flood and effects in Poerua river, Westland, New Zealand. N Z J Geol Geoph 48(4):683–705

    Article  Google Scholar 

  • Harrison JV, Falcon NL (1938) An ancient landslip at Saidmarreh in southwestern Iran. J Geol 46(3):296–309

  • Heshmati GA (2007) Vegetation characteristics of four ecological zones of Iran. Int J Plant Prod 1(2):215–224

    Google Scholar 

  • Hewitt K (2006) Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides. Prog Phys Geog 30(3):365–393

    Article  Google Scholar 

  • Hovius N, Stark CP, Hao-Tsu C, Jiun-Chuan L (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J Geol 108(1):73–89

    Article  Google Scholar 

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the south Caspian basin. Geophys J Int 148(2):214–245

    Google Scholar 

  • Kim YS, Peacock DC, Sanderson DJ (2004) Fault damage zones. J Struct Geol 26(3):503–517

    Article  Google Scholar 

  • Korup O (2004) Geomorphometric characteristics of New Zealand landslide dams. Eng Geol 73(1):13–35

    Article  Google Scholar 

  • Korup O (2005) Large landslides and their effect on sediment flux in South Westland, New Zealand. Earth Surf Proc Landf 30(3):305–323

    Article  Google Scholar 

  • Korup O, McSaveney MJ, Davies TR (2004) Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand. Geomorphology 61(1):189–207

    Article  Google Scholar 

  • Korup O, Strom AL, Weidinger JT (2006) Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien Shan, and the Southern Alps in New Zealand. Geomorphology 78(1):3–21

    Article  Google Scholar 

  • Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1):77–90

    Article  Google Scholar 

  • Mahdavifar M, Memarian P (2013) Assessment of earthquake-induced landslides triggered by Roudbar–Manjil earthquake in Rostamabad (Iran) quadrangle using knowledge-based hazard analysis approach. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-induced landslides. Springer, Berlin, pp 769–780

    Chapter  Google Scholar 

  • McGrath AG, Davison I (1995) Damage zone geometry around fault tips. J Struct Geol 17(7):1011–1024

    Article  Google Scholar 

  • Nazari H, Ritz JF, Salamati R, Shafei A, Ghassemi A, Michelot JL, Massault M, Ghorashi M (2009) Morphological and palaeoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophys J Int 178(2):1028–1041

    Article  Google Scholar 

  • Okamoto T, Sakurai M, Tsuchiya S, Yoshimatsu H, Ogawa K, Wang G (2013) Secondary hazards associated with coseismic landslide. In: Ugai K, Yagi H, Wakai A (eds) Earthquake-induced landslides. Springer, Berlin, pp 77–82

    Chapter  Google Scholar 

  • Peng M, Zhang LM (2012) Analysis of human risks due to dam break floods—part 2: application to Tangjiashan landslide dam failure. Nat Hazard 64(2):1899–1923

    Article  Google Scholar 

  • Pratt-Sitaula B, Garde M, Burbank DW, Oskin M, Heimsath A, Gabet E (2007) Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan landslide-dam lake record. Quat Res 68(1):111–120

    Article  Google Scholar 

  • Radfar J, Emami MH (2002) Geology map of Qazvin sheet (1:100000). Geological Survey of Iran, Tehran

    Google Scholar 

  • Ritz JF, Balescu S, Soleymani S, Abbassi M, Nazari H, Feghhi K, Shabanian E, Tabassi H, Farbod Y, Lamothe M, Michelot JL (2003) Determining the long-term slip rate along the Mosha Fault, Central Alborz, Iran. Implications in terms of seismic activity. In: Proceeding of the 4th international conference on seismology and earthquake engineering, Tehran, Iran, p 1214

  • Saidi A, Akbarpour MR (1992) Geology map of Kiyasar 1:100000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Scheingross JS, Minchew BM, Mackey BH, Simons M, Lamb MP, Hensley S (2013) Fault-zone controls on the spatial distribution of slow-moving landslides. Geol Soc Am Bull 125(3–4):473–489

    Article  Google Scholar 

  • Shahrabi M (2005) Tar and Havir mountainous lakes, how they formed. Roshd 10(4):26–29

    Google Scholar 

  • Shi ZM, Xiong X, Peng M, Zhang LM, Xiong YF, Chen HX, Zhu Y (2016) Risk assessment and mitigation for the Hongshiyan landslide dam triggered by the 2014 Ludian earthquake in Yunnan, China. Landslides 14(1):269–285

    Article  Google Scholar 

  • Shoaei Z (2014) Mechanism of the giant Seimareh Landslide, Iran, and the longevity of its landslide dams. Environ Earth Sci 72(7):2411–2422

    Article  Google Scholar 

  • Shoaei Z, Ghayoumian J (1997) Seymareh the largest complex slide in the world. International Association of Engineering, Vancouver, pp 21–25

    Google Scholar 

  • Shoaei Z, Ghayoumian J (1998) The largest debris flow in the world, Seimareh Landslide, Western Iran. In: Sassa K (ed) Environmental forest science. Springer, Dordrecht, pp 553–561

    Chapter  Google Scholar 

  • Shroder JF (1998) Slope failure and denudation in the western Himalaya. Geomorphology 26(1):81–105

    Article  Google Scholar 

  • Sotudeh M (1995) From Astara to Estarbad, volume 3: monuments and historical buildings in Western Mazandaran. Society for the National Heritage of Iran, Tehran

    Google Scholar 

  • Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 2004 May 28 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophys J Int 170(1):249–261

    Article  Google Scholar 

  • Tatar M, Hatzfeld D, Abbassi A, Fard FY (2012) Microseismicity and seismotectonics around the Mosha fault (Central Alborz, Iran). Tectonophysics 544:50–59

    Article  Google Scholar 

  • Vahdati-Daneshmand F (1997) Geological map of East Tehran scale 1:100,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Vahdati-Daneshmand F (2001) Geological map of Marzan Abad scale 1:100,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Vahdati-Daneshmand F, Ajdari A, Gharib F, Sadeghi A, Karimi HR, Mosaffa HR, Saidi A (2003) Geological map of Pol-e Sefid scale 1:100,000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. Spec Rep 176:11–33

    Google Scholar 

  • Vaziri F (2003) Applied hydrology in Iran-The second book: identification of glaciers in Iran. The Management and Planning Organization of Iran, Tehran

    Google Scholar 

  • Vernant P, Nilforoushan F, Chery J, Bayer R, Djamour Y, Masson F, Nankali H, Ritz JF, Sedighi M, Tavakoli F (2004a) Deciphering oblique shortening of central Alborz in Iran using geodetic data. Earth Planet Sci Let 223:177–185

    Article  Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F (2004b) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157(1):381–398

    Article  Google Scholar 

  • Watson RA, Wright HE (1969) The saidmarreh landslide, Iran. Geol Soc Am Sp Pap 123:115–140

    Google Scholar 

  • Weidinger JT (1998) Case history and hazard analysis of two lake-damming landslides in the Himalayas. J Asian Earth Sci 16(2):323–331

    Article  Google Scholar 

  • Yang SH, Pan YW, Dong JJ, Yeh KC, Liao JJ (2013) A systematic approach for the assessment of flooding hazard and risk associated with a landslide dam. Nat Hazard 65(1):41–62

    Article  Google Scholar 

  • Zare M (2004) Seismologic and earthquake engineering aspects of Firoozabad (Kojour) earthquake Mw: 6.2. IIEES Res Bull 7(3–4):45–59

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Martin G. Culshaw, Editor-in-Chief of BEGE and anonymous reviewers for their comments and helpful suggestions; we are responsible for any remaining errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ehteshami-Moinabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehteshami-Moinabadi, M., Nasiri, S. Geometrical and structural setting of landslide dams of the Central Alborz: a link between earthquakes and landslide damming. Bull Eng Geol Environ 78, 69–88 (2019). https://doi.org/10.1007/s10064-017-1021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1021-8

Keywords

Navigation