Skip to main content

Advertisement

Log in

Assessment and validation of GIS-based landslide susceptibility maps: a case study from Feltrino stream basin (Central Italy)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslide susceptibility studies focus on producing susceptibility maps starting from landslide inventories and considering the main conditioning factors. The validity of susceptibility maps must be verified in terms of model accuracy and prediction skills. This paper deals with a GIS-based landslide susceptibility analysis and relative validation in a hilly-coastal test-area in Adriatic Central Italy. The susceptibility analysis was performed via bivariate statistics using the Landslide-Index method and a detailed (field-based) landslide inventory. Selection and mapping of conditioning factors and landslide inventories was derived from detail geomorphological analyses of the study area. The susceptibility map was validated using recent (shallow) landslides in terms of both model accuracy and prediction skills, via Success rate and Prediction rate curves, respectively. In addition, a pre-existing official landslide inventory was applied to the model to test whether it can be used when a detailed (field-based) inventory is not available, thereby extending its usability in similar physiographic regions. The outcome of this study reveals that slope and lithology are the main conditioning factor of landslides, but also highlights the key role of surficial deposits in susceptibility assessment, for both their type and thickness. The validation results show the effectiveness of the susceptibility model in both model accuracy and prediction skills given the good percentage of correctly classified landslides. Moreover, comparison of the susceptibility map with the official Regional landslides inventory proves the possibility of using the developed susceptibility model also in the absence of detailed landslide mapping, by considering inventories that are already available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abruzzo Region (2000) 1:25,000 scale Land use maps. L’Aquila: Struttura Speciale di Supporto Sistema Informativo Regione Abruzzo. Retrieved from http://opendata.regione.abruzzo.it/

  • Abruzzo Region (2007) 1:5,000 scale regional technical maps. L’Aquila: Struttura Speciale di Supporto Sistema Informativo Regione Abruzzo. Retrieved from http://opendata.regione.abruzzo.it/

  • Abruzzo Region (2009) 1:5,000 scale orthophotos color images. L’Aquila: Struttura Speciale di Supporto Sistema Informativo Regione Abruzzo. Retrieved from http://opendata.regione.abruzzo.it/

  • Abruzzo-Sangro Basin Authority (2005) Piano Stralcio di Bacino per l’Assetto Idrogeologico dei Bacini di Rilievo Regionale Abruzzesi e del Bacino del Fiume Sangro. (L.R. 18.05 1989 n.81 e L. 24.08.2001)– Carta inventario– scala 1:25.000. http://autoritabacini.regione.abruzzo.it/index.php/carta-inventario-pai. Accessed 2 February 2016

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32(4):269–277. doi:10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14. doi:10.5194/nhess-2-3-2002

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Appennines, Italy. Comput Geosci 24(4):373–385. doi:10.1016/S0098-3004(97)00117-9

    Article  Google Scholar 

  • Aucelli PPC, Cavinato GP, Cinque A (1996) Indizi geomorfologica di tettonica plio-quaternaria sul piedimonte adriatico dell’Appennino abruzzese. Il quaternario 9(1):299–302

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81. doi:10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol 94(2):355–368. doi:10.1111/j.1365-2745.2006.01104.x

    Article  Google Scholar 

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74:337. doi:10.1007/s10064-014-0616-6

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings 4th international symposium on landslides, Canadian Geotechnical Society, Toronto, 1:307–324

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853–862

    Article  Google Scholar 

  • Buccolini M, Gentili B, Materazzi M, Aringoli D, Pambianchi G, Piacentini T (2007) Human impact and slope dynamics evolutionary trends in the monoclinal relief of the Adriatic central Italy. Catena 71:96–109

    Article  Google Scholar 

  • Buccolini M, Coco L, Cappadonia C, Rotigliano E (2012) Relationships between a new slope morphometric index and calanchi erosion in northen Sicily, Italy. Geomorphology 149–150:41–48. doi:10.1016/j.geomorph.2012.01.012

    Article  Google Scholar 

  • Calcaterra D, Parise M, Palma B, Pelella L (2000) The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In: Bromhead E, Dixon N, Ibsen ML (eds) Proceedings of the 8th international symposium on landslides, vol 1. Balkema, Cardiff, pp 209–214

  • Campbell R (1975) Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, Southern California. USGS Professional Paper, 851, pp 51

  • Cantalamessa G, Di Celma C (2004) Sequence response to syndepositional regional uplift: insights from high-resolution sequence stratigraphy of late Early Pleistocene strata, Periadriatic Basin, central Italy. Sediment Geol 164:283–309

    Article  Google Scholar 

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bull Int Assoc Eng Geol 32:49–54

    Article  Google Scholar 

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45(7):907–919. doi:10.1007/s00254-003-0952-5

    Article  Google Scholar 

  • Capolongo D, Pennetta L, Piccarreta M, Fallacara G, Boenzi F (2008) Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy). Earth Surf Proc Land 33(3):364–379. doi:10.1002/esp.1560

    Article  Google Scholar 

  • Cappadonia C, Coco L, Buccolini M, Rotigliano E (2016) From slope morphometry to morphogenetic processes: an integrated approach of field survey, GIS morphometric analysis and statistics in Italian badlands. Land Degrad Dev 27(3):851–862. doi:10.1002/ldr.2449

    Article  Google Scholar 

  • Carminati E, Doglioni C (2004) Europe–Mediterranean tectonics. In: Encyclopedia of geology. Elsevier, Dordrecht, pp 135–146

  • Carrara A (1989) Landslide hazard mapping by statistical methods: a “black-box” model approach. In: Proceedings of the Workshop on Natural Disasters in European–Mediterranean Countries, Perugia, CNR-US NFS, pp 427–445

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical Information Systems in assessing natural hazards. Kluwer, Dordrecht, pp 35–176

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2–3):117–135

    Article  Google Scholar 

  • Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil mantled landscapes. Earth Surf Process Landf 28(9):925–950. doi:10.1002/esp.470

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177. doi:10.1016/j.enggeo.2008.03.016

    Article  Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res 46. doi:10.1029/2008wr007450

  • Cavinato GP, De Celles PG (1999) Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: response to corner flow above subducting slab in retrograde motion. Geology 27:955–958. doi:10.1130/0091-7613

    Article  Google Scholar 

  • Cerdà A, García-Fayos P (1997) The influence of slope angle on sediment, water and seed losses on badland landscapes. Geomorphology 18:77–90

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962. doi:10.1007/s00254-003-0838-6

    Article  Google Scholar 

  • Chiocchini U, Giorelli R (1994) Aspetti geomorfologici e costruttivi delle gallerie Cintioni, San Giovanni e Diavolo della linea Ancona-Bari tra Ortona e Casalbordino. Geol Appl e Idrog 29:1–17

    Google Scholar 

  • Chiocchini U, Barbieri M, Madonna S, Di Stefano A, Poteti M (2006) I depositi del Pleisotcene tra Ortona e la stazione ferroviaria di Casalboridino (provincia di Chieti). Rend Soc Geol It 2:3–14

    Google Scholar 

  • Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(3):451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b

    Article  Google Scholar 

  • Chung CJF, Fabbri AG (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation procedure. Geomorphology 94:438–452. doi:10.1016/j.geomorph.2006.12.036

    Article  Google Scholar 

  • Chung CJF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, 107–134

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364. doi:10.1016/S0169-555X(02)00079-X

    Article  Google Scholar 

  • Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo catchment (Northern Calabria, Italy). Nat Hazards 56:881–898

    Article  Google Scholar 

  • Conoscenti C, Ciaccio M, Caraballo-Arias N, Gómez-Gutiérrez Álvaro, Rotigliano E, Agnesi V (2015) Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy). Geomorphology 242:49–64. doi:10.1016/j.geomorph.2014.09.020

    Article  Google Scholar 

  • Corine Land Cover (2012) Land cover map. Environmental European Agency. Retrieved from http://land.copernicus.eu/

  • Crescenti U, Milia ML, Rusciadelli G (2004) Stratigraphic and tectonic evolution of the Pliocene Abruzzi basin (Central Apennines, Italy). Boll Soc Geol It 123:163–174

    Google Scholar 

  • Crozier M (1986) Climatic triggering of landslide episodes. In: Landslides: causes, consequences and environment. Croom Helm, London, pp 169–192

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation research board, US National Research Council. Special Report 247, Washington, DC, Chapter 3, pp 36–75

  • D’Agostino N, Jackson JA, Dramis F, Funiciello R (2001) Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the Central Appennines (Italy). Geophys J Int 147(2):475–497. doi:10.1046/j.1365-246X.2001.00539.x

    Article  Google Scholar 

  • D’Alessandro L, Genevois R, Paron P, Ricci F (2004) Type and distribution of rainfall triggered landslides in the Abruzzi region (central Italy) after the January 2003 meteoric event. 32nd International Geological Congress: “From the Mediterranean Area toward a Global Geological Renaissance. Geology, Natural Hazards and Cultural Heritage”. Firenze 20–28 Aug 2004

  • D’Alessandro L, Miccadei E, Piacentini T (2008) Morphotectonic study of the lower Sangro River valley (Abruzzi, Central Italy). Geomorphology 102:145–158. doi:10.1016/j.geomorph.2007.06.019

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. doi:10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 43:381–391. doi:10.1007/s002540000163

    Google Scholar 

  • De Guidi G, Scudero S (2013) Landslide susceptibility assessment in the Peloritani Mts. (Sicily, Italy) and clues for tectonic control of relief processes. Nat Hazards Earth Syst Sci 13:949–963. doi:10.5194/nhess-13-949-2013

    Article  Google Scholar 

  • DeGraff JV, Romesburg HC (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology, vol 19. Alien & Unwin, Boston, pp 401–414

    Google Scholar 

  • Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Z Geomorphol Suppl 29:191–206

    Google Scholar 

  • Dietrich WE, Reiss R, Hsu ML, Montgomery DR (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Processes 9:383–400

    Article  Google Scholar 

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhongfan Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78(3):1749–1776. doi:10.1007/s11069-015-1799-2

    Article  Google Scholar 

  • Dramis F, Guida D, Cestari A (2011) Nature and aims of geomorphological maps. In: Smith M, Paron P, Griffiths J (eds) Geomorphological mapping. Elsevier, pp 39–73

  • Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23. doi:10.1023/B:NHAZ.0000026786.85589.4a

    Article  Google Scholar 

  • Esu F, Martinetti S (1965) Considerazioni sulle caratteristiche tecniche delle argille azzurre dell’Italia sud-orientale in relazione alle diverse condizioni stratigrafiche e tettoniche. Geol Appl e Idrog 7:197–215

    Google Scholar 

  • Evans IS (1972) General geomorphology, derivatives of altitude and descriptive statistics. Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, NY, pp 17–90

  • Evans SG (1982) Landslides and surficial deposits in urban areas of British-Columbia—a review. Can Geotech J 19(3):269–288

    Article  Google Scholar 

  • Falaschi F, Giacomelli F, Federici PR, Puccinelli A, D’Amato Avanzi G, Pochini A, Ribolini A (2009) Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat Hazards 50:551–569. doi:10.1007/s11069-009-9356-5

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189. doi:10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:85–98. doi:10.1016/j.enggeo.2008.03.014

    Article  Google Scholar 

  • Fiorillo F (2004) Blue clay slope angle in relation to some geological and geotechnical characteristics, Italy. Q J Eng Geol Hydrogeol 37(1):49–59. doi:10.1144/1470-9236/03-027

    Article  Google Scholar 

  • Fox DM, Bryan RB, Price AG (1997) The influence of slope angle on final infiltration rate for interrill conditions. Geoderma 80:181–194

    Article  Google Scholar 

  • Freer J, McDonnell JJ, Beven KJ, Peters NE, Burns DA, Hooper RP, Aulenbach B, Kendall C (2002) The role of bedrock topography on subsurface storm flow. Water Resour Res 38(12):1269. doi:10.1029/2001WR000872

    Article  Google Scholar 

  • Fressard M, Thiery Y, Maquaire O (2014) Which data for quantitative landslide susceptibility mapping at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France). Nat Hazards Earth Syst Sci 14:569–588. doi:10.5194/nhess-14-569-2014

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen Region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44(1–4):147–161. doi:10.1016/S0013-7952(97)81260-4

    Article  Google Scholar 

  • Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27. doi:10.1016/j.enggeo.2004.10.004

    Article  Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) slope stability. Wiley, Chichester, pp 187–230

    Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach F (1996) The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environ Eng Geosci 2(4):531–555

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering (revised third edition). Institute of Mining and Metallurgy, London

    Google Scholar 

  • Hopp L, McDonnell JJ (2009) Connectivity at the hillslope scale: identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J Hydrol 376:378–391. doi:10.1016/j.jhydrol.2009.07.047

    Article  Google Scholar 

  • Horton RE (1932) Drainage basin characteristics. Trans Amer Geophys Union 13:350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–375

    Article  Google Scholar 

  • Irigaray C, Fernandez T, El Hamdouni R, Chacon J (1999) Verification of landslide susceptibility mapping. A case study. Earth Surf Proc Land 24:537–544. doi:10.1002/(SICI)1096-9837(199906)24:6

    Article  Google Scholar 

  • Irigaray C, Fernandez T, El Hamdouni R, Chacon J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41:61–79. doi:10.1007/s11069-006-9027-8

    Article  Google Scholar 

  • ISPRA (2007) IFFI, Inventario dei Fenomeni Franosi in Italia. http://www.apat.gov.it/site/it-IT/Progetti/IFFI_-_Inventario_dei_fenomeni_franosi_in_Italia/. Accessed 4 June 2011

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Kirby MJ (1987) Modelling some influences of soil erosion, landslides and valley gradient on drainage density and hollow development. Catena Suppl 10:1–14

    Google Scholar 

  • Lanni C, Borga M, Rigon R, Tarolli P (2012) Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution. Hydrol Earth Syst Sci 16:3959–3971. doi:10.5194/hess-16-3959-2012

    Article  Google Scholar 

  • Lanni C, Mcdonnell J, Hopp L, Rigon R (2013) Simulated effect of soil depth and bedrock topography on near-surface hydrologic response and slope stability. Earth Surf Process Landforms 38(2):146–159. doi:10.1002/esp.3267

    Article  Google Scholar 

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3(4):247–251. doi:10.1038/ngeo776

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113. doi:10.1007/s002540100310

    Article  Google Scholar 

  • Lee S, Ryu J, Min K, Won J (2001) Development of two artificial neural network methods for landslide susceptibility analysis. Int Geos Rem Sens Symposium 5:2364–2366

    Google Scholar 

  • Marchetti L, Pellegrini M, Bondesan D, Castaldini GB, Castiglioni C, Tellini C (2001) Forme legate a interventi antropici - Forms connected to anthropic activities. (Comitato glaciologico italiano)–Suppl Geog Fis e Din Quat IV:123–139. ISSN: 1724-475 7

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30

    Article  Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strat-egies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191. doi:10.1007/s12303-015-0026-1

    Article  Google Scholar 

  • Nilsen TH, Turner BL (1975) Influence of rainfall and ancient landslide deposits on recent landslides (1950–71) in urban areas of Contra Costa County, California. US Geological Survey Bulletin 1388, p 18

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landforms 22:107–120. doi:10.1002/(SICI)1096-9837(199702)22:2

    Article  Google Scholar 

  • Okimura T (1989) Prediction of slope failure using the estimated depth of the potential failure layer. J Nat Disast Sci 11(1):67–79

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646

    Article  Google Scholar 

  • Ori GG, Roveri M, Vannoni F (1986) Plio-Pleistocene sedimentation in the Apenninic foredeep (Central Adriatic Sea, Italy). In: Allen PA, Homewood P (eds) Foreland Basins, IAS special publication 8. Blackwell, Oxford, pp 183–198

    Chapter  Google Scholar 

  • Parotto M, Praturlon A (2004) The southern Apennine arc. In: Geology of Italy. Special Volume of the Italian Geological Society for the IGC 32 Florence, pp 53–58

  • Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol It 7:75–119

    Google Scholar 

  • Petschko H, Brenning A, Bell R, Goetz J, Glade T (2014) Assessing the quality of landslide susceptibility maps—case study Lower Austria. Nat Hazards Earth Syst Sci 14:95–118. doi:10.5194/nhess-14-95-2014

    Article  Google Scholar 

  • Piacentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S, Strada C (2012) Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 151–152:196–206. doi:10.1016/j.geomorph.2012.02.003

    Article  Google Scholar 

  • Piacentini T, Sciarra M, Miccadei E, Urbano T (2015) Geomorphological mapping of near-surface deposits: hillslope evolution of the Adriatic piedmont of the Central Apennines (Feltrino Stream basin and minor coastal basins, Abruzzo, Italy). J Maps 11(2):299–313. doi:10.1080/17445647.2014.949884

    Article  Google Scholar 

  • Piacentini T, Urbano T, Sciarra M, Schipani I, Miccadei E (2016) Geomorphological mapping of the floodplain at the confluence of the Aventino and Sangro rivers (Abruzzo, Central Italy). J Maps 12(3):443–461. doi:10.1080/17445647.2015.1036139

    Article  Google Scholar 

  • Poli S, Sterlacchini S (2007) Landslide representation strategies in susceptibility studies using weights-of evidence modeling technique. Nat Resour Res 16:121–134. doi:10.1007/s11053-007-9043-8

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2014) Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Nat Hazards 72(2):1189–1217. doi:10.1007/s11069-014-1065-z

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25(6):747–759. doi:10.1016/j.envsoft.2009.10.01

    Article  Google Scholar 

  • Reichenbach P, Busca C, Mondini AC, Rossi M (2014) The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manage 54(6):1372–1384

    Article  Google Scholar 

  • Remondo J, Gonzalez A, Dıaz de Teran JR, Cendrero A, Fabbri A, Cheng CF (2003) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain. Nat Hazards 30:437–444. doi:10.1023/B:NHAZ.0000007201.80743.fc

    Article  Google Scholar 

  • Romeo RW, Mari M, Floris M, Pappafico G, Gori U (2011) Un approccio per coniugare la suscettività spaziale e temporale da frana: un’applicazione nella Regione Marche (Italia Centrale). Italian J Eng Geol Environ 2:63–77

    Google Scholar 

  • Rosso R, Rulli MC, Vannucchi G (2006) A physically based model for the hydrologic control on shallow landsliding. Water Resour Res 42:W06410. doi:10.1029/2005WR004369

    Article  Google Scholar 

  • Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology 94:314–324. doi:10.1016/j.geomorph.2006.10.032

    Article  Google Scholar 

  • Saulnier GM, Beven K, Obled C (1997) Including spatially variable effective soil depths in TOPMODEL. J Hydrol 202:158–172

    Article  Google Scholar 

  • Schlunegger F, Zeilinger G, Kounov A, Kober F, Hüsser B (2006) Scale of relief growth in the forearc of the Andes of Northern Chile (Arica latitude, 18 S). Terra Nova 18:217–223. doi:10.1111/j.1365-3121.2006.00682.x

    Article  Google Scholar 

  • Sciarra M (2016) Analisi della suscettività da frana nella fascia pedemontana-collinare e costiera abruzzese. PhD thesis in Engineering geology, University “G. d’Annunzio” Chieti-Pescara, Italy, p 187

  • Soeters R, Van Westen CJ (1996) Slope stability: recognition, analysis and zonation. In: Turner AK, Shuster RL (eds) Landslides: investigation and mitigation. Transportation Research Board, Special Report 247, pp 129–177

  • Summerfield MA (1997) Global geomorphology. Longman, New York, p 537

    Google Scholar 

  • Tromp-van Meerveld HJ, McDonnell JJ (2006) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour Res 42:W02411. doi:10.1029/2004WR003800

    Google Scholar 

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD Dissertation, Technical University Delft, ITC-Publication Number 15, ITC, Enschede, The Netherlands

  • Van Westen CJ (1994) GIS in landslides hazard zonation: a review with examples from the Andes of Colombia. In: Price MF, Heywood DJ (eds) Mountain environments and geographic information systems. Taylor and Francis, London, pp 135–167

    Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation; why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131. doi:10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC, pp 11–33

    Google Scholar 

  • Varnes JD (1984) IAEG commission on landslides and other mass movements, landslide hazard zonation: a review of principles and practice. The UNESCO Press, Paris, p 63

    Google Scholar 

  • Von Ruette J, Papritz A, Lehmann P, Rickli C, Or D (2011) Spatial statistical modeling of shallow landslides—validating predictions for different landslide inventories and rainfall events. Geomorphology 133:11–22. doi:10.1016/j.geomorph.2011.06.01

    Article  Google Scholar 

  • Wilson RC (1989) Rainstorms, pore pressures, and debris flows: a theoretical framework. In: Morton DM, Sadler PM (eds) Landslides in a semi-arid environment, 2nd edn. Publications of the Inland Geological Society, California, pp 101–117

    Google Scholar 

  • Wilson JP, Gallant JC (2000) Digital terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 1–27

    Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226. doi:10.1007/s11069-006-9030-0

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85:274–287. doi:10.1016/j.catena.2011.01.014

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266. doi:10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks and support vector machine. Environ Earth Sci 61(4):821–836. doi:10.1007/s12665-009-0394-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two anonymous reviewers whose suggestions improved the quality of this paper. They are also very grateful to Prof. Brent Poe for having revised and improved the language of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Coco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciarra, M., Coco, L. & Urbano, T. Assessment and validation of GIS-based landslide susceptibility maps: a case study from Feltrino stream basin (Central Italy). Bull Eng Geol Environ 76, 437–456 (2017). https://doi.org/10.1007/s10064-016-0954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0954-7

Keywords

Navigation