Skip to main content
Log in

Using P wave modulus to estimate the mechanical parameters of rock mass

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Obtaining reasonable and reliable mechanical parameters of rock mass in engineering is a challenge. These parameters are difficult to obtain from a large sum of field tests due to the restrictions of time and costs. In this paper, linear equations of estimating rock mass mechanical parameters based on the P wave modulus are proposed through dimensional analysis. The field tests data of the Xiangjiaba, Baihetan, and Jinping I dam foundations are discussed to verify the universality and applicability of these linear equations. In addition, a new equation for calculating the disturbance factor D based on the P wave modulus is presented to estimate the mechanical parameters of rock mass in the disturbed zones, and then the field test data of the Three Gorges Project (TGP) shiplock slope are studied to verify the equation. The results show that the linear equations based on the P wave modulus have higher correlation than other function equations based on the P wave velocity. Therefore, the empirical equations using P wave modulus are feasible for estimating the mechanical parameters of rock mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barton N (2002) Some new q-value correlations to assist in site characterisation and tunnel design. Int J Rock Mech Min Sci 39(2):185–216. doi:10.1016/S1365-1609(02)00011-4

    Article  Google Scholar 

  • Chang C, Zoback MD, Khaksar A (2006) Empirical relations between rock strength and physical properties in sedimentary rocks. J Petrol Sci Eng 51(3):223–237. doi:10.1016/j.petrol.2006.01.003

    Article  Google Scholar 

  • Chinese National Standard (2013) GB/T 50266-2013 Standard for test methods of engineering rock mass. China Planning Press, Beijing

    Google Scholar 

  • Fu HX (2009) Rock mass quality evaluation of the foundation of concrete pedestal on the Left Bank of Jinping Hydropower Station. Dissertation, Chengdu University of technology

  • Gardner GHF, Gardner LW, Gregory AR (2012) Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics 39(6):770. doi:10.1190/1.1440465

    Article  Google Scholar 

  • Gaviglio P (1989) Longitudinal waves propagation in a limestone: the relationship between velocity and density. Rock Mech Rock Eng 22(4):299–306. doi:10.1007/BF01262285

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Kayabasi A (2003) Predicting the deformation moduli of rock masses. Int J Rock Mech Min Sci 40(5):701–710. doi:10.1016/S1365-1609(03)00062-5

    Article  Google Scholar 

  • Gupta V, Sharma R (2012) Relationship between textural, petrophysical and mechanical properties of quartzites: A case study from northwestern Himalaya. Eng Geol s135–136(7):1–9. doi:10.1016/j.enggeo.2012.02.006

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C (2002) Hoek–Brown failure criterion-2002 edition. In: Proceedings of the Fifth North American Rock Mechanics Symposium, p 1

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215. doi:10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Kayabasi A, Gokceoglu C, Ercanoglu M (2003) Estimating the deformation modulus of rock masses: a comparative study. Int J Rock Mech Min Sci 40(1):55–63. doi:10.1016/S1365-1609(02)00112-0

    Article  Google Scholar 

  • Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure appl Geophys 170(4):507–514. doi:10.1007/s00024-012-0556-7

    Article  Google Scholar 

  • Li C (2001) A method for graphically presenting the deformation modulus of jointed rock masses. Rock Mech Rock Eng 34(1):67–75. doi:10.1007/s006030170027

    Article  Google Scholar 

  • Li WS, Zhou HM (2010) Study of unloading rock mass deformation paramters for high arch dam foundation base of GOUPITAN hydropower station. Chin J Rock Mech Eng 29(7):1333–1338 (in Chinese)

    Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Google Scholar 

  • Mineo S, Pappalardo G, Rapisarda F et al (2015) Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng Geol 195:225–235. doi:10.1016/j.enggeo.2015.06.010

    Article  Google Scholar 

  • Palmström A, Singh R, Palmström A, Singh R (2001) The deformation modulus of rock masses—comparisons between in situ tests and indirect estimates. Tunn Undergr Space Technol 16(2):115–131. doi:10.1016/S0886-7798(01)00038-4

    Article  Google Scholar 

  • Pan JN, Meng ZP, Hou QL et al (2013) Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. J Struct Geol 54:129–135. doi:10.1016/j.jsg.2013.07.008

    Article  Google Scholar 

  • Pappalardo G (2014) Correlation between P wave velocity and physical–mechanical properties of intensely jointed dolostones, peloritani mounts, ne sicily. Rock Mech Rock Eng 48(4):1711–1721. doi:10.1007/s00603-014-0607-8

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67(1):17–22. doi:10.1007/s10064-007-0109-y

    Article  Google Scholar 

  • Song YH, Ju GH (2012) Determination of rock mass shear strength based on in situ tests and codes and comparison with estimation by Hoek–Brown criterion. Chin J Rock Mech Eng 31(5):1000–1006 (in Chinese)

    Google Scholar 

  • Song YH, Ju GH, Sun M (2011) Relationship between wave velocity and deformation modulus of rock masses. Rock soil Mech 32(5):1507–1512 (in Chinese)

    Google Scholar 

  • Sonin AA (2004) A generalization of the Π-theorem and dimensional analysis. Proc Natl Acad Sci USA 101(23):8525–8526. doi:10.1073/pnas.0402931101

    Article  Google Scholar 

  • Sun JS, Lu WB (2008) Modification of Hoek-Brown criterion and its application. Eng J Wuhan Univ 41(1):63–66 (in Chinese)

    Google Scholar 

  • Wang HC, Pan JN, Wang S et al (2015) Relationship between macro-fracture density, P-wave velocity, and permeability of coal. J Appl Geophys 117:111–117. doi:10.1016/j.jappgeo.2015.04.002

    Article  Google Scholar 

  • Wu AQ, Liu FZ (2012) Advancement and application of the standard of engineering classification of rock massed. Chin J Rock Mech Eng 8:1513–1523 (in Chinese)

    Google Scholar 

  • Wu XC, Wang SJ, Ding EB (1998) Relationship between rock mass deformability modulus and the depth. Chin J Rock Mech Eng 05:487–492 (in Chinese)

    Google Scholar 

  • Yan CB, Xu GY (2005) Modification of Hoek–Brown expressions and its application to engineering. Chin J Rock Mech Eng 24(22):4030–4035 (in Chinese)

    Google Scholar 

  • Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5):871–875. doi:10.1016/j.ijrmms.2004.01.012

    Article  Google Scholar 

  • Zeng XX (2011) The study of rock mechanical properties and values of parameters of Xiangjiaba hydropower station dam foundation. Dissertation, Chengdu University of technology

  • Zhang L, Einstein HH (2004) Using RQD to estimate the deformation modulus of rock masses. Int J Rock Mech Min Sci 41(2):337–341. doi:10.1016/S1365-1609(03)00100-X

    Article  Google Scholar 

  • Zhong Q, Chen M (2013) Prediciton of rock mass mechanical parameters in excavation disturbed zone by acoustic velocity and rock strength. Eng J Wuhan Univ 46(2):170–173 (in Chinese)

    Google Scholar 

  • Zhou HM, Xiao GQ, Yan SC (2005) Application of evaluation of rock mass quality to acceptance of toe-slab of SHUIBUYA concrete faced rockfill dam on QINGJIANG river. Chin J Rock Mech Eng 24(20):3737–3741 (in Chinese)

    Google Scholar 

  • Zhou HF, Nie DX, Wang CS (2015) Correlation between wave velocity and deformation modulus of basalt massed as dam foundation in hydropower project. Earth Sci J China Univ Geosci 11:1904–1912. doi:10.3799/dqkx.2015.171

    Google Scholar 

  • Zhu GS, Gui ZX, Xiong XB (1995) Relationships between density and P wave, S-wave velocities. Actage Phys Sin A01:260–264 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Basic Research Program (973 Program) of China (2011CB013501), the National Natural Science Foundation of China (51279146), and the New Century Excellent Talents in University (NCET-2012-0425). The authors wish to express their thanks to all supporters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Chen, M., Lu, W. et al. Using P wave modulus to estimate the mechanical parameters of rock mass. Bull Eng Geol Environ 76, 1461–1470 (2017). https://doi.org/10.1007/s10064-016-0932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0932-0

Keywords

Navigation