Skip to main content
Log in

Mineralogy-induced radiological aspects with characterization of commercial granites exploited in Turkey

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This study deals with natural radioactivity levels of the ten most important commercial granites from various districts currently being exploited as dimension stone in Turkey. Determining the level of radioactivity is important for human health, particularly for indoor use of granites. This study shows that the relationship between the natural radioactivity and the radiogenic mineralogical contents of the granites exploited for commercial utilization in Turkey is variable. The natural radioactivity levels (i.e., activity concentrations of radionuclides 226Ra, 232Th, and 40K) of granite samples were determined by high-resolution gamma-ray spectrometry. Using these activities, radiological hazard dose rates (absorbed and annual effective) and gamma-activity indexes were calculated using standard equations accepted by public health bodies, taking relevant international reports and guidelines into account. Three of the granites exploited in the Black Sea, Aegean, and Central Anatolia regions were found to be high in radium-equivalent activities and annual effective doses due to minerals bearing the radionuclides, including zircon, apatite, allanite, xenotime, uranothorite, K-feldspars, and biotite. Of those, uranothorite contains large amounts of radionuclides and is present in samples of granites collected from the Black Sea and Aegean regions. Radioactivity measurements using high-resolution gamma-ray spectroscopy serve as a rapid screening tool to evaluate natural radioactivity, whereas detailed petrographic, mineralogical, and elemental investigations can reveal the source of radioactive emissions in granites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi A (2013) Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat Prot Dosim 155(3):335–342

    Article  Google Scholar 

  • Adams JAS, Osmond YK, Rogers JJW (1959) The geochemistry of uranium and thorium. Phys Chem Earth 3:298–343

    Article  Google Scholar 

  • Akal C (2013) Coeval Shoshonitic-ultrapotassic dyke emplacements within the Kestanbol pluton, Ezine–Biga peninsula (NW Anatolia). Turk J Earth Sci 22:220–238

    Google Scholar 

  • Altschuler ZS, Clarke RS, Young EY (1958) Geochemistry of uranium in apatite and phosphorite. US Geological Survey Professional Paper, 314-D, pp 45–90

  • Altunkaynak Ş, Yılmaz Y (1999) The Kozak pluton and its emplacement. Geol J 34:257–274

    Article  Google Scholar 

  • Altunkaynak Ş, Sunal G, Aldanmaz E, Genç ŞC, Dilek Y, Furnes H, Foland KA, Yang J, Yıldız M (2012) Eocene granitic magmatism in NW Anatolia (Turkey) revisited: new implications from comparative zircon SHRIMP U–Pb and 40Ar–39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos 155:289–309

    Article  Google Scholar 

  • Amin RM (2012) Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ Earth Sci 67(3):771–775

    Article  Google Scholar 

  • Amstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and phi–rho-z procedures. Microbeam analysis, pp 239–246

  • Angı OS (2007) Aksaray Yaylak granitinin kaplama taşı yönünden özelliklerinin araştırılması. MSc thesis, Istanbul Technical University, Istanbul, Turkey, p 105

  • Anjos R, Veiga R, Soares T, Santos A, Aguiar J, Frascac M, Brage J, Uzêda D, Mangia L, Facure A, Mosquera B, Carvalho C, Gomes P (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39:245–253

    Article  Google Scholar 

  • Ataman G (1974) Revue geochronologique, des massifs plutoniques et metamorphiques del’Anatolie. Hacettepe Bulletin of Natural Sciences and Engineering 3:518–523

    Google Scholar 

  • Aykamış AŞ, Turhan Ş, Uğur FA, Baykan UN, Kılıç AM (2013) Radon exhalation rates and indoor radon concentration of some granite samples used as construction material in Turkey. J Radiat Prot Dosim 157:105–111

    Article  Google Scholar 

  • Aykol A, Tokel S (1991) The geochemistry and tectonic setting of the Demirkoy pluton of the Srednogorie–Strandja granitoid chain, NW Turkey. Mineral Mag 55:249–256

    Article  Google Scholar 

  • Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  Google Scholar 

  • Bingöl E (1989) 1:2000000 scaled geological map of Turkey. MTA Press, Ankara

    Google Scholar 

  • Bingöl E, Delaloye M, Ataman G (1982) Granitic intrusion in Western Anatolia: a contribution to the geodynamic study of this area. Eclogae Geologische Helvetica 75(2):437–446

    Google Scholar 

  • BS EN 12440 (2008) Natural stone—denomination criteria standard, UK

  • Canbaz B, Çam NF, Yaprak G, Candan O (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazards in the Kestanbol granitoid, Turkey. Radiat Prot Dosim 141(2):192–198

    Article  Google Scholar 

  • Carrera G, Garavaglia M, Magnoni S, Valli G, Vecchi R (1997) Natural radioactivity and radon exhalation in stony materials. J Environ Radioact 34:149–159

    Article  Google Scholar 

  • Çetin E, Altınsoy N, Örgün Y (2012) Natural radioactivity levels of granites used in Turkey. Radiat Prot Dosim 151:299–305

    Article  Google Scholar 

  • Clark SP, Peterman ZE, Heier KS (1966) Abundance of U, Th and K. In: Handbook of physical constants. Geol. Soc. Am. Mere., vol 97, pp 521–541

  • Cuney M, Friederich M (1987) Physicochemical and crystal-chemical controls on accessory paragenesis in granitoids: implications for uranium metallogenesis. Bull Minéral 110:235–247

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-Forming Minerals Volume 1A: Orthosilicates, 2nd edn. Geological Society, London

    Google Scholar 

  • Delaloye M, Bingöl E (2000) Granitoids from western and northwestern Anatolia: geochemistry and modeling of geodynamic evolution. Int Geol Rev 42(3):241–268

    Article  Google Scholar 

  • EC (European Commission) (2011) Draft presented under Article 31 Euratom Treaty for the opinion of the European Economic and Social Committee: laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. COM(2011) 593, Brussels, Belgium

  • El-Arabi AM (2007) Ra, Th, K concentrations in igneous rocks from eastern desert Egypt and its radiological implications. Radiat Meas 42:94–100

    Article  Google Scholar 

  • Erkül-Tatar S, Özmen SF, Erkül F, Boztosun İ (2016) Comparison between natural radioactivity levels and geochemistry of some granitoids in western Turkey. Turk J Earth Sci 25:242–255

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, Chichester

    Google Scholar 

  • Goldschmidt VM (1954) Geochemistry (edited by Alex Muir). Clarendon Press, Oxford, p 730

  • Guillén J, Tejado JJ, Baeza A, Corbacho JA, Muñoz JG (2014) Assessment of radiological hazard of commercial granites from Extremadura (Spain). J Environ Radioact 132:81–88

    Article  Google Scholar 

  • Heinrich WME (1958) Mineralogy and geology of radioactive raw materials. McGraw-Hill Book Company, New York

    Google Scholar 

  • IAEA (International Atomic Energy Agency) (1987) Preparation of gamma-ray spectroscopy reference materials RGU-1, RGTh-1 and RGK-1 report-IAEA/RL/148, Vienna, Austria

  • Ilbeyli N (1998) Petrogenesis of collision-related plutonic rocks, central Anatolia (Turkey). PhD thesis, Durham University, UK, p 279

  • Kadıoğlu YK, Dilek Y, Güleç N, Foland KA (2003) Tectonomagmatic evolution of bimodal plutons in the Central Anatolian Crystalline Complex, Turkey. Geol J 111:671–690

    Article  Google Scholar 

  • Karacık Z, Yılmaz Y (1998) Geology of the ignimbrites and the associated volcano–plutonic complex of the Ezine area, northwestern Anatolia. J Volcanol Geotherm Res 85:251–264

    Article  Google Scholar 

  • Karadeniz Ö, Akal C (2014) Radiological mapping in the granodiorite area of Bergama (Pergamon)–Kozak, Turkey. Radioanal Nucl Chem 302:361–373

    Article  Google Scholar 

  • Karadeniz Ö, Çıyrak N, Yaprak G, Akal C (2011) Terrestrial gamma exposure in the granodiorite area of Bergama (Pergamon)–Kozak, Turkey. Radioanal Nucl Chem 288(3):919–926

    Article  Google Scholar 

  • Karadeniz Ö, Yaprak G, Akal C, Emen İ (2012) Indoor radon measurements in the granodiorite area of Bergama (Pergamon)–Kozak, Turkey. Radiat Prot Dosim 149(2):147–154

    Article  Google Scholar 

  • Kerur BR, Kumar A, Narayani S, Lagare MT, Abani MC (2003) Study of radioactivity levels in granites of North Karnataka region of India. Radiat Prot Environ 26(1–2):446–449

    Google Scholar 

  • Köksal S, Göncüoğlu MC, Toksoy-Köksal F, Möller A, Kemnitz H (2008) Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from Central Anatolia. Mineral Petrogr 93:185–211

    Article  Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–833

    Article  Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge University Press, UK, p 236

  • MacKenzie WS, Donaldson CH, Guilford C (1995) Atlas of igneous rocks and their textures. Longman, Harlow Press, London

    Google Scholar 

  • Marocchi M, Righi S, Bargossi GM, Gasparotto G (2011) Natural radionuclides content and radiological hazard of commercial ornamental stones: an integrated radiometric and mineralogical-petrographic study. Radiat Meas 46:538–545

    Article  Google Scholar 

  • Moore WJ, McKeey EH, Akıncı Ö (1980) Chemistry and chronology of plutonic rocks in the Pontid mountains, northern Turkey. European copper deposits congress book, Belgrade, pp 209–216

  • NEA-OECD (1979) Exposure to radiation from the natural radioactivity in building materials. Report by a group of experts of the OECD, Nuclear Energy Agency, Paris, France

  • Onargan T, Gür F, Kaya E, Güneri S (2012) Assessment of natural radioactivity in commercial granites used in Turkey. J Environ Sci Health Part A 47(12):1825–1830

    Article  Google Scholar 

  • Örgun Y, Altınsoy N, Yılmaz-Şahin S, Güngör Y, Gültekin AH, Karahan G, Karacık Z (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey. Appl Radiat Isot 65:739–747

    Article  Google Scholar 

  • Osmanlıoğlu AE (2006) Natural radioactivity and evaluation of effective dose equivalent of granites in Turkey. Radiat Prot Dosim 121:325–329

    Article  Google Scholar 

  • Papadopoulos A, Christofides G, Koroneos A, Papado-poulou L, Papastefanou C, Stoulos S (2013) Natural radioactivity and radiation index of the major granitic plutons in Greece. J Environ Radioact 124:227–238

    Article  Google Scholar 

  • Pavlidou S, Koroneos A, Papastefanou C, Christofides G, Stoulos S, Vavelides M (2006) Natural radioactivity of granites used as building materials. J Environ Radioact 89:48–60

    Article  Google Scholar 

  • Pereira D, Neves L, Pereira A, Peinado M, Blanco JA, Tejado JJ (2012) A radiological study of some ornamental stones: the bluish granites from Extremadura (Spain). Nat Hazards Earth Syst Sci 12:395–401

    Article  Google Scholar 

  • Pivko D (2004) World’s quarries of commercial granites—localization and geology. In: Proceedings of the international conference in dimension stone, Prague, vol 1, pp 147–152

  • Pollack HN (1982) The heat flow from the continents. Annu Rev Earth Planet Sci 10:459–481

    Article  Google Scholar 

  • Puccini A, Xhixha G, Cuccuru S, Oggiano G, Xhixha M, Mantovani F, Alvarez C, Casini L (2014) Radiological characterization of granitoid outcrops and dimension stones of the Variscan Corsica–Sardinia batholith. Environ Earth Sci 71(1):393–405

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group UK Ltd., Oxford

    Google Scholar 

  • Şahin-Yılmaz S, Güngör Y, Boztuğ D (2004) Comparative petrogenetic investigation of composite Kaçkar batholith granitoids in eastern Pontide magmatic arc—northern Turkey. Earth Planets Space 56:429–446

    Article  Google Scholar 

  • Salas HT, Nalini HA Jr, Mendes JC (2006) Radioactivity dosage evaluation of Brazilian ornamental granitic rocks based on chemical data, with mineralogical and lithological characterization. Environ Geol 49:520–526

    Article  Google Scholar 

  • Sayın N (2013) Radioactive element contents of some granites used as building materials: insights into the radiological hazards. Bull Eng Geol Environ 72:579–587

    Article  Google Scholar 

  • Staatz MH, Conklin NM, Brownfield IK (1977) Rare earths, thorium, and other minor elements in sphene from some plutonic rocks in west-central Alaska. J Res USGS Surv 5:623–628

    Google Scholar 

  • Stanley SM (2004) Earth system history, 2nd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240

    Article  Google Scholar 

  • Stranden E (1976) Some aspects on radioactivity of building materials. Physica Norvegica 8:167–173

    Google Scholar 

  • Turhan S (2012) Estimation of possible radiological hazards from natural radioactivity in commercially-utilized ornamental and countertops granite tiles. Ann Nucl Energy 44:34–39

    Article  Google Scholar 

  • Turtiainen T, Weltner A (2007) Assessment of dose during the life cycle of natural stone production. Radiat Prot Dosim 124(2):167–171

    Article  Google Scholar 

  • Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma measurements and dose rates in commercially used tiling rocks (granites). J Environ Radioact 70:223–235

    Article  Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the effects of Atomic Radiation) (2000) Sources and effects of Ionizing radiation, exposures from natural radiation sources, annex B. United Nations, New York

    Google Scholar 

  • Vanderhaeghe O, Cecile F, Jean-François M, Anne-Sylvie A-M, Pierre B, Michel C (2011) Cratons radioactivity, crustal growth, paleogeotherms and metallogenic provinces. In: Geophysical research abstracts, vol 13, EGU2011-4101. EGU General Assembly 2011

  • Whitfield JM, Rogers JJW, Adams JAS (1959) The relationship between the petrology and the thorium and uranium contents of some granitic rocks. Geochim Cosmochim Acta 17:248–271

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Xinwei L, Lingqing W, Xiaodan J (2006) Radiometric analysis of Chinese commercial granites. J Radioanal Nucl Chem 267(3):669–673

    Article  Google Scholar 

Download references

Acknowledgments

This paper was prepared using the radioactivity data and their research methods of commercial granites exploited in Aksaray region (Turkey) in the PhD thesis of O. Serkan ANGI [in preparation, to be submitted to Istanbul Technical University (ITU) Institute of Science and Technology]. The authors would like to thank Prof. Dr. Paul A. Schroeder and Dr. Christopher J. Fleisher from University of Georgia Department of Geology (USA), and Prof. Dr. Yusuf Kağan Kadıoğlu from Ankara University Department of Geological Engineering (Turkey) for their generous and valuable contributions that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Angı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angı, O.S., Yavuz, O., Yalçın, T. et al. Mineralogy-induced radiological aspects with characterization of commercial granites exploited in Turkey. Bull Eng Geol Environ 76, 507–522 (2017). https://doi.org/10.1007/s10064-016-0894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-016-0894-2

Keywords

Navigation