Skip to main content
Log in

Modeling the flow behavior of a simulated municipal solid waste

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Flow slides in the municipal solid waste (MSW) landfill are common geological disasters that have the potential to cause loss of life, destruction of property, and damage to the natural environment in the surrounding region. In this work, a mixture of peat, kaolin clay and quartz sand was used as a model test material to simulate MSW. A series of physical model tests on MSW simulant flows was carried out to capture the run-out behavior of the waste and analyze its mobility. The testing assembly consisted of a transparent model box, a steel frame and a high-speed camera. Flow failure was induced by lifting up a baffle to cause the MSW simulant to collapse and flow. Images of the flowing mass were taken by the high-speed camera. The series of images clearly displays the propagation of MSW simulant flows. The final profile of the MSW simulant and the shape of the deposition area were observed and measured. The run-out distances, final deposit shapes, flow depth, velocities and angle of reach showed significant variation between test configurations, indicating the strong influence of moisture content on overall mobility. The test results obtained can aid in the prediction of distal reach, flow depth and maximum velocity of solid waste following a landfill slope failure, which are necessary for hazard assessment and mitigation planning, and also to provide physical data for theoretical and numerical model verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Blight GE (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manage Res 26(5):448–463

    Article  Google Scholar 

  • Blight GE, Fourie AB (2005) Catastrophe revisited—disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23:219–248

    Article  Google Scholar 

  • Brunner PH, Fellner J (2007) Setting priorities for waste management strategies in developing countries. Waste Manage Res 25(3):234–240

    Article  Google Scholar 

  • Chang M (2002) A 3D slope stability analysis method assuming parallel lines of intersection and differential straining of block contacts. Can Geotech J 39(4):799–811

    Article  Google Scholar 

  • Chang M (2005) Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on observed sliding-block mechanism. Comput Geotech 32:587–599

    Article  Google Scholar 

  • Chang MH, Mitchell JK, Seed RB (1999) Model studies of the 1988 Kettleman Hills Landfill slope failure. Geotech Test J 22(1):61–66

    Article  Google Scholar 

  • Chen Z, Yuan J (2009) An extended environmental multimedia modeling system (EEMMS) for landfill case studies. Environ Forensics 10:336–346

    Article  Google Scholar 

  • Chen GR, Kuo KJ, Chen YN et al (2011) Model tests for studying the failure mechanism of dry granular soil slopes. Eng Geol 119(1–2):51–63

    Article  Google Scholar 

  • Choi SK, Lee MJ, Choo H et al (2010) Preparation of a large size granular specimen using a rainer system with a porous plate. Geotech Test J 33(1):45–54

    Google Scholar 

  • Choudhury D, Savoikar P (2009) Equivalent-linear seismic analyses of MSW landfills using DEEPSOIL. Eng Geol 107(3–4):98–108

    Article  Google Scholar 

  • Chugh AK, Stark TD, DeJong KA (2007) Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA. Can Geotech J 44(1):33–53

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271

    Article  Google Scholar 

  • Dahl MPJ, Mortensen LE, Veihe A et al (2010) A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Nat Hazards Earth Syst Sci 10(2):159–170

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Article  Google Scholar 

  • Eid HT, Stark TD, Evans WD, Sherry PE (2000) Municipal solid waste slope failure I: waste and foundation soil properties. J Geotech Geoenviron Eng 126(5):397–407

    Article  Google Scholar 

  • Feng SJ (2005) Static and dynamic strength properties of municipal solid waste and stability analyses of landfill. PhD thesis of Zhejiang University, Hangzhou (in Chinese)

  • Fretti C, Lopresti DCF, Pedroni S (1995) A pluvial deposition method to reconstitute well-graded sand specimens. Geotech Test J 18(2):292–298

    Article  Google Scholar 

  • Gao D (2009) Deformation and stability of intermediate liner for landfill expansion and controlling measures. Zhejiang University, Hangzhou

    Google Scholar 

  • Ghobadi MH, Babazadeh R, Bagheri V (2013) Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environ Earth Sci 70(4):1823–1840

    Article  Google Scholar 

  • Gomes C, Ernesto A, Lopes ML, Moura C (2002) Sanitary landfill of Santo Tirso-municipal waste physical, chemical and mechanical properties. In: Proceedings of the 4th international congress on environmental geotechnics, vol 1, pp 255–261, Brazil

  • Hauksson S, Pagliardi M, Barbolini M, Johannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg Sci Technol 49(1):54–63

  • Hossain MS (2002) Mechanics of compressibility and strength of solid waste in bioreactor landfills. PhD Thesis, NC State University, USA

  • Huang Y, Dai ZL, Zhang WJ et al (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manage Res 31(3):256–264

    Article  Google Scholar 

  • Hunter G, Fell R (2003) Travel distance angle for “rapid” landslides in constructed and natural soil slopes. Can Geotech J 40(6):1123–1141

    Article  Google Scholar 

  • Jafari NH, Stark TD, Merry S (2013) The July 10 2000 Payatas Landfill Slope Failure. Int J Geoeng Case Hist 2(3):208–228

    Google Scholar 

  • Jessberger HL (1994) Geotechnical aspects of landfill design and construction, part 2: materials parameters and test methods. Institution of Civil Engineers. Geotech Eng J 107:105–113

    Article  Google Scholar 

  • Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock Mech Rock Eng 46(4):713–729

    Article  Google Scholar 

  • Kappes MS, Malet JP, Remaitre A et al (2011) Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Nat Hazards Earth Syst Sci 11(2):627–641

    Article  Google Scholar 

  • Karimpour-Fard M, Machado SL, Shariatmadari N et al (2011) A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Manag 31(8):1807–1819

    Article  Google Scholar 

  • Kavazanjian E, Matasovic N, Bonaparte R, Schmertmann GR (1995) Evaluation of MSW properties for seismic analysis. Geoenvironment 2:1126–1141

    Google Scholar 

  • Kavazanjian E, Matasovic N, Stokoe KH (1996) In situ shear wave velocity of solid waste from surface wave measurements. In: Proceedings of the 2nd international congress on environmental geotechnics, vol 1, Osaka, Japan, pp 97–102

  • Kent PE (1966) The transport mechanism in catastrophic rockfalls. Geol J 74:79–83

    Article  Google Scholar 

  • Kocasoy G, Curi K (1995) The Umraniye-Hekimbasi open dump accident. Waste Manage Res 13(4):305–314

    Google Scholar 

  • Lagioia R, Sanzeni A, Colleselli F (2006) Air, water and vacuum pluviation of sand specimens for the triaxial apparatus. Soils Found 46(1):61–67

    Article  Google Scholar 

  • Landva A, Clark JI (1990) Geotechnics of waste fills. Geotechnics of waste fills—theory and practice. ASTM STP 1070:86–106

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63(3–4):301–331

    Article  Google Scholar 

  • Liu CL, Zhang Y, Zhang F et al (2007) Assessing pollutions of soil and plant by municipal waste dump. Environ Geol 52(4):641–651

    Article  Google Scholar 

  • Lü XL, Lai HB, Huang MS. (2014) The triaxial test for model municipal solid waste and pore pressure coefficient analysis. In: Proceedings of the 4st China National Symposium on Environmental Geotechnical and Geotextile Material, Chongqing (in Chinese)

  • Machado SL, Carvalho FM, Vilar OM (2002) Constitutive model for municipal solid waste. J Geotech Geoenviron Eng ASCE 128(11):940–951

    Article  Google Scholar 

  • Matasovic N, Kavazanjian E (1998) Cyclic characterization of OII landfill solid waste. J Geotech Geoenviron Eng 124(3):197–210

    Article  Google Scholar 

  • Merry SM, Kavazanjian E, Fritz WU (2005) Reconnaissance of the July 10, 2000, Payatas landfill failure. J Perform Constr Facil 19(2):100–107

    Article  Google Scholar 

  • Mitchell JK, Seed RB, Seed HB (1990) Kettleman Hills waste landfill slope failure 1: liner-system properties. J Geotech Eng 116:647–668

    Article  Google Scholar 

  • Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  Google Scholar 

  • Pelkey S, Valsangkar A, Landva A (2001) Shear displacement dependent strength of municipal solid waste and its major constituent. Geotech Test J 24(4):381–390

    Article  Google Scholar 

  • Prochaska AB, Santi PM, Higgins JD, et al. (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98(1–2):29–40

  • Rajabi AM, Mahdavifar MR, Khamehchiyan M et al (2011) A new empirical estimator of coseismic landslide displacement for Zagros Mountain region (Iran). Nat Hazards 59(2):1189–1203

    Article  Google Scholar 

  • Reddy KR, Gangathulasi J, Parakalla NS (2009) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 27:578–587

    Article  Google Scholar 

  • Reddy KR, Hettiarachchi H, Gangathulasi J (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 31:2275–2286

    Article  Google Scholar 

  • Scheidegger A (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics 5:231–236

    Article  Google Scholar 

  • Shreve RL (1968a) Leakage and ßuidization in air-layer lubricated avalanches. Geol Soc Am Bull 79:653–658

    Article  Google Scholar 

  • Shreve RL (1968b) The Blackhawk landslide. Geol Soc Am Spec Papers 108:1–47

    Article  Google Scholar 

  • Simoni A, Mammoliti M, Berti M (2011) Uncertainty of debris flow mobility relationships and its influence on the prediction of inundated areas. Geomorpology 132(3–4):249–259

    Article  Google Scholar 

  • Straub S (1997) Predictability of long runout landslide motion: implications from granular flow mechanics. Geol Rundsch 86:415–425

    Article  Google Scholar 

  • Thusyanthan NI, Madabhushi SPG, Singh S (2006a) Centrifuge modeling of solid waste landfill systems—part 1: development of a model municipal solid waste. Geotech Test J 29(3):217–222

    Google Scholar 

  • Thusyanthan NI, Madabhushi SPG, Singh S (2006b) Centrifuge modeling of solid waste landfill systems—part 2: centrifuge testing of MSW simulant. Geotech Test J 29(3):223–229

    Google Scholar 

  • USEPA (2009) Municipal solid waste generation, recycling, and disposal in the United States detailed tables and figures for 2008. Washington, DC

  • Valentino R, Barla G, Montrasio L (2008) Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng 41:153–177

    Article  Google Scholar 

  • Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H et al (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Wang HT, Nie YF (2001) Municipal solid waste characteristics and management in China. J Air Waste Manag Assoc 51:250–263

    Article  Google Scholar 

  • Yang CB (2013) Centrifuge model tests on deformation and stability landfill slopes. Zhengjiang University, Huangzhou (in Chinese)

  • Ye GL, Zhang F, Yashima A et al (2005) Numerical analyses on progressive failure of slope due to heavy rain with 2D and 3D FEM. Soils Found 45(2):1–17

    Google Scholar 

  • Ye GL, Sheng JR, Ye B et al (2012) Automated true triaxial apparatus and its application to over-consolidated clay. Geotech Test J 35(4):517–528

    Article  Google Scholar 

  • Ye GL, Ye B, Zhang F (2014) Strength and dilatancy of overconsolidated clays in drained true triaxial tests. J Geotech Geoenviron Eng 140(4). doi:10.1061/(ASCE)GT.1943-5606.0001060

  • Yu L, Batlle F (2011) A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill. Waste Manag 31(12):2484–2496

    Article  Google Scholar 

  • Yu L, Batlle F, Carrera J (2011) Variations of waste unit weight during mechanical and degradation processes at landfills. Waste Manage Res 29(12):1303–1315

    Article  Google Scholar 

  • Zekkos D, Bray JD, Kavazanjian E et al (2006) Unit weight of municipal solid waste. J Geotech Geoenviron Eng 132(10):1250–1261

    Article  Google Scholar 

  • Zhao H, Song EX (2012) A method for predicting co-seismic displacements of slopes for landslide hazard zonation. Soil Dyn Earthquake Eng 40:62–77

    Article  Google Scholar 

  • Zhao YR, Xie Q, Wang GL et al (2014) A study of shear strength properties of municipal solid waste in Chongqing landfill, China. Environ Sci Pollut Res 21(22):12605–12615

    Article  Google Scholar 

  • Zhu B, Yang CB, Wang L, et al (2012) Compounding model MSW and Centrifugal model tests of landfill. In: Proceedings of the 1st China National symposium on coupled phenomena in geomaterials and environmental geotechnics, Hangzhou, pp 425–432 (in Chinese)

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Program 973) through Grant No. 2012CB719803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Huang, Y., Jiang, F. et al. Modeling the flow behavior of a simulated municipal solid waste. Bull Eng Geol Environ 75, 275–291 (2016). https://doi.org/10.1007/s10064-015-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-015-0735-8

Keywords

Navigation