Skip to main content

Advertisement

Log in

GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The city of Constantine has suffered frequent landslides during the last few decades because of its geological, geomorphological, climatic and seismotectonic setting as well as anthropic activities. In this work we perform a landslide susceptibility zonation (LSZ) zonation by using bivariate statistical and expert approaches in GIS technology for this area. Firstly, a landslide inventory map was constructed from interpretation of aerial photographs, high resolution satellite images, field surveys and bibliographies. Then various causal factors such as lithology, slope, aspect, precipitation, land use, distance to streams, distance to faults and anthropogenic factors like distance to roads associated with landslide activity were considered and the corresponding thematic layers generated using GIS techniques. The relative importance of these layers in causing landslides has been evaluated using bivariate statistics and expert methods to generate LSZ maps. The expert-based method provided a subjective classification of the study area in terms of landslide susceptibility which does not completely fit the landslide field survey. However unlikely, the bivariate statistics-based method provided the most satisfying results and appears to be the most accurate. Indeed, results show that 27.2 % of the study area lies within a very high to high susceptibility zone that encompasses 73.64 % of the existing landslides. Moderate, low and very low susceptibility zones cover, respectively, 25.7, 21.7 and 25.4 % of the study area. The LSZ maps generated may serve as useful tools for land management and planning in the Constantine region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Acharya G, De Smedt F, Long NT (2006) Assessing Landslide hazard in GIS: A case study from Rasuwa Nepal. Bull Eng Geol Environ 65:99–107

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • ARCADIS (2003) Etude des glissements de terrain de la ville de Constantine et de ses alentours. Unpublished report

  • Aris Y, Coiffait PE, Guiraud R (1998) Characterisation of Mesozoic-Cenozoic deformation and paleostress fields in the Central Constantinois, northeast Algeria. Tectonophysics 290:59–85

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalized linear modelling of susceptibility to landsliding in the central Appennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparison of results from two methods and verifications. Eng Geol 81:432–445

    Article  Google Scholar 

  • Bai S, Wang J, Lu G, Zhou P, Hou S, Xu S (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Benaissa A, Bellouche MA (1999) Propriétés géotechniques de quelques formations géologiques propices aux glissements de terrain dans l’agglomération de Constantine (Algérie). Bull Eng Geol Environ 57:301–310

    Article  Google Scholar 

  • Benaissa A, Cordary D, Giraud A (1989) Les mouvements de terrains dans la zone urbaine de Constantine (Algérie). Bull AIGI 740:85–90

    Google Scholar 

  • Benazzouz MT (2002) Les caractéristiques géomorphologiques des glissements de terrain à Constantine (Algérie): risques et aménagement. In: Proceedings of the Symposium “Geomorphology: from expert opinion to modelling”, Strasbourg, France, April 2002, pp 87–94

  • Bougdal R (2007) Urbanisation et mouvements de versants dans le contexte géologique et géotechnique des bassins néogènes d’Algérie du Nord. PhD thesis. USTHB, Algiers, p 185

  • Bougdal R, Belhai D, Antoine P (2006) Géologie de la ville de Constantine et de ses environs. Bull Serv Géol Algérie 18:3–23

    Google Scholar 

  • Bouhadad Y (2013) Occurrence and impact of characteristic earthquakes in northern Algeria. J Nat hazards 67:1573-0840. doi:10.1007/s11069-013-0704-0

    Google Scholar 

  • Bouhadad Y, Benhammouche A, Bourenane H, Ait Ouali A, Chikh M, Guessoum N (2010) The Laalam (Algeria) damaging landslide triggered by a moderate earthquake (Mw = 5.2). Nat Hazards 54:261–272

    Article  Google Scholar 

  • Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of potenza. Nat Hazards 45:55–72. doi:10.1007/s11069-007-9169-3

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. Geographical information systems in assessing natural hazards. Kluwer, The Netherlands, pp 135–175

    Chapter  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo. Cuba Geomorphol 94(3–4):453–466

    Article  Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chang JFC, Andrea GF (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30(451–472):2003

    Google Scholar 

  • Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423

    Article  Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sensing 65(12):1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Article  Google Scholar 

  • Coiffait PE (1992) Un bassin post-nappes dans son cadre structural : l’exemple du bassin de Constantine (Algérie Nord-Orientale). Thèse Doctorat Es-Sciences, Paris

    Google Scholar 

  • Coiffait PE, Vila JM, Guellal S (1977) Carte géologique d’El Aria à 1/50000

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, TRB special report, 247. National Academy Press, Washington, pp 36–75

    Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2007) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102(2008):496–510

    Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S (2008) DEM-based deterministic landslide hazard analysis in the Lesser Himalaya of Nepal. Georisk: Assess Manage Risk Eng Syst Geohazards 2(3):161–178

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li JXuZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40:381–391

    Article  Google Scholar 

  • Dieu TB, Owe L, Inge R, Oystein D (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444. doi:10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Djerbal L, Melbouci B (2012) Le glissement de terrain d’Ain El Hammam (Algérie):causes et évolution. Bull Eng Geol Environ 71:587–597. doi:10.1007/s10064-012-0423-x

    Article  Google Scholar 

  • DUC Constantine (2004) Etude des glissements de terrain de la ville de Constantine, site de Belouizded-Kitouni, de Belle, de Boudraa Salah, de Boussouf. expertise des constructions endommagées. Unpublished internal report, p 51

  • Durand Delga M (1969) Mise au point sur la structure du Nord-Est de la Berbérie. Publ Serv Géol Algérie 39:89–131

    Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75(3–4):229–250. doi:10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C, Van Asch TWJ (2008) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23

    Article  Google Scholar 

  • Fall M, Azzam R (2001a) Ingenieur geologische und numerische Standsicherheits analysen der Basaltkliffe in Dakar. Int J Felsbau 19(1):51–57

    Google Scholar 

  • Fall M, Azzam R (2001b) An example of multi-disciplinary approach to landslide assessment in coastal area. International conference on landslide, proceedings international conference on landslides: causes impacts and countermeasures, Glu¨ckauf Verlag, Davos, pp 45–54

  • Ficheur M (1899) Carte géologique au 1/50 000ème de Constantine

  • Genevois R (2000) Landslides hazard identification and risk evaluation in the town of Constantine (NE Algeria). Unpublished report, Euro-Med Pilot Project on Civil Protection, 31 p

  • Gokceoglu C, Aksoy H (1999) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44:147–161

    Article  Google Scholar 

  • Gorsevski PV, Gessler PE, Boll J, Elliot WJ, Foltz RB (2006) Spatially and temporally distributed modelling of landslide susceptibility. Geomorphology 80:178–198. doi:10.1016/j.geomorph.2006.02.011

    Article  Google Scholar 

  • Guemache MA (2004) Etude de l’instabilité de terrain dans le site du pont de Sidi Rached (Constantine, Nord-Est Algérie). Post-grade diss. CERG 2004, Geneva, University, 40 p

  • Guemache MA, Chatelain JL, Machane D, Benahmed S, Djadia L (2011) Failure of landslide stabilization measures: the sidi rached viaduct case (Constantine, Algeria). African Earth Sci, pp 10 10.1016

  • Guemache MA, Chatelain JL, Machane D, Benahmed S (1016) Djadia L (2011) Failure of landslide stabilization measures: the Sidi Rached viaduct case (Constantine, Algeria). Afr Earth Sci 10:10

    Google Scholar 

  • Guettouche MS (2012) Modeling and risk assessment of landslides using fuzzy logic. Application on the slopes of the Algerian Tell (Algeria). Arabian Geosci 39:1866-751. doi:10.1007/s12517-012-0607-5

    Google Scholar 

  • Guiraud R (1973) Evolution post-triasique de l’avant-pays de la chaîne alpine en Algérie, d’après l’étude du bassin du Hodna et des régions voisines. PhD. thesis. Nice University

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, central Italy. Environ Manag 25(3):247–363

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Landslide hazard assessment in the Staffora basin, northern Italian Apennines. Geomorphology 72:272–299

    Article  Google Scholar 

  • Hadmoko DS (2007) Toward GIS-based integrated landslide hazard assessment: a critical overview. Indonesian Geogr 34:55–77

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility Zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4):17–28. doi:10.1016/j.geomorph.2005.07.005

  • Lee S (2007) Landslide susceptibility mapping using an artificial neural network in the Gangneung area, Korea. Remote Sens 28:4763–4783

    Article  Google Scholar 

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London, p 454

    Book  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2004) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int Remote Sens 25(11):2037–2052

    Article  Google Scholar 

  • LNTPB (1980) Le pont de Sidi Rached. Etude des sols et propositions de confortement. Unpublished Internal reports. Laboratoire des Travaux Publics

  • LTPE (Archives d’études de sols de la ville de Constantine. Période: 1970–2010, Unpublished Internal reports. Laboratoire des Travaux Publics de l’Est

  • Machane D (2003) Analyse et gestion du risque de glissement de terrain dans la ville de Constantine (Algérie). Mém. Post-grade diss., CERG, 2003, Geneva University, 70 p

  • Machane D, Bouhadad Y, Cheikhlounis G, Chatelain JL, Oubaiche EH, Abbes K, Guillier B, Bensalem R (2008) Examples of geomorphologic and geological hazards in Algeria. Nat Hazards 45:295–308

    Article  Google Scholar 

  • Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435. doi:10.1007/s11069-008-9230-x

    Article  Google Scholar 

  • Marmi R, Guiraud R (2006) End Cretaceous to recent polyphased compressive tectonics along the ‘Môle Constantinois’ and foreland (NE Algeria). Afr Earth Sci 45(1):123–136

    Article  Google Scholar 

  • MATE/MATL (1999) Plan de Prévention des Risques (PPR): Risques de Mouvements de terrain, Ministère de l’Aménagement du Territoire et de l’Environnement (MATE), Ministère de l’Equipement des Transports et du Logement (METL), Paris. La Documentation Française, Paris

  • Mathew J, Jha VK, Rawa GS (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Sci 92(5):628–638

    Google Scholar 

  • Mattauer M (1958) Etude géologique de l’Ouarsenis oriental (Algérie). Publ Serv Carte géol Algérie, N.S. Bull. 17, p 534

  • Nandi A, Shakoor A (2010) Application of logistic regression model for slope instability prediction in Cuyahoga River Watershed, Ohio, USA. Georisk 1:12

    Google Scholar 

  • Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Article  Google Scholar 

  • O.N.M (2012) The hydrometeorological data of Ain El Bey station for a time-period of 32 years (1980–2012), National office of meteorological (ONM)

  • Paulsen S, Krauter E, Hanisch J (1998) Glissements de terrain dans la ville de Constantine (Algérie). Rapport final Inst Fédér Géosc Res Nat Hanovre

  • Pincent B, Bougdal R, Panet M, Bentabet A (2008) Le pont Sidi Rached à Constantine (Algérie): une culée dans un grand glissement de terrain. Bull Serv Geol Algeria 19(3):197–215

    Google Scholar 

  • Pradhan B, Lee S (2010a) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Modelling Softw 25:747–759

  • Pradhan B, Sezer AE, Gokceoglu C, Buchroithner MF (2010b) Land- slide susceptibility mapping by neurofuzzy approach in a landslide prone area (Cameron Highland, Malaysia). IEEE T Geosci Remote 48(12):4164–4177. doi:10.1109/TGRS.2010.2050328

    Article  Google Scholar 

  • Remondo J, Gonzàlez-Diez A, Dìaz de Teràn JR, Cendrero A (2003) Landslides susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipùzcoa (Spain). Nat Hazards 30:267–279

    Article  Google Scholar 

  • RGPH (2008) 5ème Recensement de la Population et de l’Habitat en Algérie de l’Office National des Statistiques. ONS, Avril 2008

  • Riheb H, Abd errahmane B, Yacine L, Mustapha B, Abd El Madjid Cc, Abdeslem D (2012) Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int 302(2013):224–237

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Saldivar-Sali A, Einstein HH (2007) A landslide risk rating system for Baguio, Philippines. Eng Geol 91(2–4):85–99

    Article  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner KA, Schuster RL (eds) Landslides: investigation and mitigation. Transport research board special report, vol 247, pp 129–177

  • Stephen G Vans (1998) Les glissements de terrain dans la ville de Constantine, Algérie: géologie, géotechnique et travaux de correction potentielle. Rapport d’expertise Commission geologique du Canada

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Terlien MTJ, Van Asch ThWJ, Van Westen CJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrar A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, London, pp 57–77

    Chapter  Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59. doi:10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • URBACO (2007) Levé de terrain à l’échelle de 1/2000 de la ville de Constantine

  • Van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhov L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ (1993) Application of Geographic Information Systems to landslide hazard zonation. ITC publication, vol. 15. International Institute for Aerospace and Earth Resources Survey, Enschede, p 245

  • Van Westen CJ (1997) Statistical landslide hazar analysis. ILWIS 2.1 for Windows application guide. ITC publication, Enschede, The Netherlands, pp 73–84

  • Van Westen CJ (2000) The modeling of landslide hazards using GIS. Surv Geophys 21:241e255

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86(2):404–414

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419

    Article  Google Scholar 

  • Van Westen CJ, Van Asch Th WJ, Soeters R (2006) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide Hazard Zonation, a review of principles and practice. IAEG Commission on Landslides. UNESCO, Paris, p 63

  • Vila JM (1977) Carte géologique de Constantine au 1/200000ème

  • Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Ph.D thesis. Paris VI Univ

  • Ward TJ, Li RM, Simons DB (1981) Use of a mathematical model for estimating potential landslide sites in steep forested drainage basins. IAHS Publ 132:21–41

    Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull As Eng Geol 21(3):337–342

    Google Scholar 

  • Wu WM, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110 through GIS-based hazard zonation. Geol Rundsch 86(2):404–414

    Google Scholar 

  • Wu S, Shi L, Wang R, Tan C, Hu D, Mei Y, Xu R (2001) Zonation of the landslide hazard in the forereservoir region of the three gorges project on the Yangtze River. Eng Geol 59:51–58. doi:10.1016/S0013-7952(00)00061-2

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparison of results and confirmations. Catena 72:1–12

    Article  Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266. doi:10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yilmaz I (2008) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 35(2009):1125–1138

    Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306. doi:10.1007/s10064-009-0185-2

    Article  Google Scholar 

  • Yilmaz I (2010) The effect of the sampling strategies on the landslide susceptibility mapping by Conditional Probability (CP) and Artificial Neural Networks (ANN). Environ Earth Sci 60(3):505–519

    Article  Google Scholar 

  • Yin KL and Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of 5th international symposium on landslides, Lausanne, Switzerland, vol 2, pp 1269–1272

  • Zezere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in area north of Lisbon (Portugal). Nat Hazards and Earth Syst Sci 2:73–82

    Article  Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386

Download references

Acknowledgments

This research was supported by the Centre National de Recherche Appliqueé en Génie Parasismique (CGS) and the Université des Sciences et de la Technology Houari Boumerdiene Bab Ezzouar (USTHB) of Algiers. The authors are also grateful to two anonymous reviewers and to Professor Isik Yilmaz from university of Cumhuriyet University (Turkey) for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bourenane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourenane, H., Bouhadad, Y., Guettouche, M.S. et al. GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74, 337–355 (2015). https://doi.org/10.1007/s10064-014-0616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-014-0616-6

Keywords

Navigation