Skip to main content
Log in

Experimental research on the evolution laws of soil fabric of compacted clay liner in a landfill final cover under the dry–wet cycle

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper aims to investigate the structural damage in compacted clay liner (CCL) caused by the dry–wet cycles in a landfill final cover. Experimental research is performed on the microstructure evolution of CCL under repeated dry–wet cycles and different initial compactness (90, 94, and 98 %). Results show that the pore size distribution of CCL has multifractal characteristics which can be classified into five self-similar intervals: macropore (>15 μm), medium-pore (8–15 μm), small-pore (0.3–8 μm), mesopore (0.04–0.3 μm), and micropore (<0.04 μm). The compression proportion of the different intervals is not equal and constant with the increase in compactness. Maximum compression interval is observed among small-pores and mesopores, with compactness ranging from 90 to 94 % and from 94 to 98 %, respectively. The effect of the dry–wet cycles mainly focuses on small-pores, medium-pores and macropores, while having little effect on meso-pores and micro-pores. The increase of macropores is one of the reasons for increase in the permeability of CCL, but it is not the main reason. Cracks causing by the irreversible shrinkage of pores is the main reason leading to permeability with an orders of magnitude increment, and improving the compactness can reduce the structural damage of CCL under the function of dry–wet cycles.

Résumé

Cet article vise à étudier l’endommagement structurel de la couche d'argile compactée (CAC) causée par les cycles de séchage-saturation dans une couverture finale de la décharge. L’étude expérimentale est effectuée sur l'évolution de la microstructure du CAC sous cycles répétés de séchage-saturation et différents compacité initiale (90, 94, and 98%). Les résultats montrent que la distribution de taille de pore de CAC a des caractéristiques multifractales qui peuvent être classés en cinq intervalles auto-similaires: macropores (>15 μm), pores moyens (8 - 15 μm), petits pores (0,3- 8 μm), mésopores (0,04- 0,3 um), et des micropores (<0,04 μm). Les proportions de compression des différents intervalles ne sont pas pareilles et constant avec l'augmentation de la compacité. L’intervalle de compression maximale est observée dans les petits-pores et les mésopores, avec une compacité comprise entre 90% et 94% et de 94% à 98%, respectivement. L'effet des cycles de séchage-saturation se concentre principalement sur les petits pores, pores moyens et les macropores, alors que peu d'effet sur mésopores et micropores. L'augmentation de macropores est l'une des raisons qui augmentent la perméabilité du CAC, mais ce n'est pas la raison principale. La fissuration due au retrait irréversible des pores est la raison principale qui mène à des ordres de grandeur en augmentation de perméabilité, et l'amélioration de la compacité peuvent réduire l’endommagement structurel du CAC dans la fonction de cycles séchage-saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albrecht BA, Benson CH (2001) Effect of desiccation on compacted natural clays. ASCE: J Geotech. Geoenviron Eng 1271:67–75

    Google Scholar 

  • Benson CH, Daniel DE, Boutwell GP (1999) Field performance of compacted clay liners. J Geotech Geoenviron Eng, ASCE 125(5):390–403

    Article  Google Scholar 

  • Boynton SS, Daniel DE (1985) Hydraulic conductivity tests on compacted clays. J Geotech Eng, ASCE 111(4):465–478

    Article  Google Scholar 

  • Clément L, Jacques L (1990) Mercury intrusion and permeability of Louiseville clay. Can Geotech J 27:761–773

    Article  Google Scholar 

  • De KCR (1984) Effect of air drying and critical point drying on the porosity of clay soils. Can Geotech J 21(1):181–185

    Article  Google Scholar 

  • Drumm E, Boles D, Wilson G (1997) Desiccation cracks result in preferential flow. Geotech News Vancouver 15(1):22–25

    Google Scholar 

  • Garcia-Bengochea I, Lovell CW, Altschaeffl AG (1979) Pore distribution and permeability of silty clay. ASCE J Geotech Eng Div 105:839–856

    Google Scholar 

  • Griffiths FJ, Joshi RC (1989) Change in pore size distribution due to consolidation of clays. Geotechnique 39(1):159–167

    Article  Google Scholar 

  • Guilherme LML, Márcio DSSA, Horst MF (2004) Computational modelling of final covers for uranium mill tailings impoundments. J Hazard Mater 110:139–149

    Article  Google Scholar 

  • Hossein N, Farimah M (2008) Hydromechanical behaviour of an expansive bentonite/silt mixture in cyclic suction-controlled drying and wetting tests. Eng Geol 101:154–164

    Article  Google Scholar 

  • Hossein N, Farimah M (2010) Influence of suction cycles on the soil fabric of compacted swelling soil. Comptes Rendus Geosci 342:901–910

    Article  Google Scholar 

  • Jiang MJ, Peng LC, Zhu HH et al (2010) Microscopic investigation on shear band of marine clay in Zhuhai, China. Rock Soil Mech 31(7):2014–2017

    Google Scholar 

  • Klein R, Baumann T, Kahapka E et al (2011) Temperature development in a modern municipal solid waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management. J Hazard Mater B 83:265–280

    Article  Google Scholar 

  • Li JH (2009) Field experimental study and numercal simulation of seepage in saturated/unsaturated cracked soil. PhD thesis, Hong Kong University of Science and Technology, Hong Kong, China

  • Liu XL, Wang SJ, Wang EZ (2011) A study on the uplift mechanism of Tongjiezi dam using a coupled hydro-mechanical model. Eng Geol 117(1–2):134–150

    Article  Google Scholar 

  • Lu N, William JL (2004) Unsaturated soil mechanics. Wiley, Hoboken

    Google Scholar 

  • Luiz FP, Osny OSB, Klaus R (2005) Gamma ray computed tomography to evaluate wetting/drying soil structure changes. Nucl Instrum Method Phys Res B 229:443–456

    Article  Google Scholar 

  • Mcbrathney AB (1993) Comments on fractal distribution of soil aggregate-size distribution calculated by number and mass. Soil Sci Soc Am J 57:1393–1394

    Article  Google Scholar 

  • Omidi GH, Thomas JC, Brown KW (1996) Effect of desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water Air Soil Pollut 89:91–103

    Article  Google Scholar 

  • Pires LF, Cooper M, Cássaro FAM (2008) Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 72:297–304

    Article  Google Scholar 

  • Rayhani MHT, Yanful EK, Fakher A (2007) Desiccation induced cracking and its effect on hydraulic conductivity of clayey soils from Iran. Can Geotech J 44:276–283

    Article  Google Scholar 

  • Rayhani MHT, Yanful EK, Fakher A (2008) Physical modeling of desiccation cracking in plastic soils. Eng Geol 97:25–31

    Article  Google Scholar 

  • Shear DL, Olsen HW, Nelson KR (1933) Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay. National Academy Press, Washington, DC, pp 1365–1370

    Google Scholar 

  • Tyler SW, Wheatcraft SW (1992a) Fractal scaling of soil particle size distribution analysis and limitations. Soil Sci Soc Am J 56:362–369

    Article  Google Scholar 

  • Tyler SW, Wheatcraft SW (1992b) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am 56(1):362–369

    Article  Google Scholar 

  • Xue R, Hu RL, Mao LT (2006) Fractal study on the microstructure variation of soft soils in consolidation process. China Civ Eng J 39(10):87–91

    Google Scholar 

  • Ye WM, Huang Y, Cui YJ et al (2005) Microstructural changing characteristics of densely compacted bentonite with suction under unconfined hydrating conditions. Chin J Rock Mech Eng 24(23):4570–4575

    Google Scholar 

  • Ye WM, Wan M, Chen B et al (2011a) Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles. Chin J Geotech Eng 33(8):1173–1177

    Google Scholar 

  • Ye WM, Qi ZY, Chen B et al (2011b) Mechanism of cultivation soil degradation in rocky desertification areas under dry/wet cycles. Environ Earth Sci 64:269–276

    Article  Google Scholar 

  • Zhang FZ, Chen XP (2011) Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil. Chin J Geotech Eng 32(1):41–46

    Google Scholar 

  • Zhang HJ, Jenga DS, Seymourb BR et al (2012) Solute transport in partially-saturated deformable porous media: application to a landfill clay liner. Adv Water Resour 40:1–10

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program) (2012CB719802); the National Water Pollution Control and Management Science and Technology Major Projects of China (2012ZX07104-002); and the National Natural Science Foundation of China (51279199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Q., Wan, Y., Chen, Yj. et al. Experimental research on the evolution laws of soil fabric of compacted clay liner in a landfill final cover under the dry–wet cycle. Bull Eng Geol Environ 73, 517–529 (2014). https://doi.org/10.1007/s10064-013-0556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0556-6

Keywords

Mots clés

Navigation