Skip to main content
Log in

Micro–macro-experimental study of two clayey materials on drying paths

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The objective of this research is to provide a better understanding of the relation between the macroscopic and microscopic behaviours of two clayey materials, a kaolinite and a mixture of kaolinite and montmorillonite. At the macroscopic scale, the approach consists of measuring the water content, void ratio and degree of saturation versus suction (s) during drying, which allows to specify the relationship between shrinkage and desaturation and highlights the characteristic phases of behaviour. At the microscopic scale, study of the orientation of the clay particles is carried out by scanning electron microscope (SEM) picture analysis under different suctions. On drying paths, the observations show an isotropy of the microfabric. The evolution of the porosity derived from mercury intrusion porosimetry tests is confirmed by SEM photograph observations.

Résumé

L’objet de cette recherche est d’offrir une meilleure compréhension du lien entre le comportement à l’échelle macroscopique et microscopique de deux matériaux argileux, une kaolinite et un mélange de kaolinite et de montmorillonite. A l’échelle macroscopique, l’approche consiste à mesurer la teneur en eau, l’indice des vides et le degré de saturation en fonction de la succion sur chemin de drainage. Ceci permet de préciser les relations entre le retrait et la désaturation et de mettre en évidence les phases caractéristiques du comportement. A l’échelle microscopique, l’étude de l’orientation des particules d’argile est réalisée par analyse d’images prises au microscope électronique à balayage (MEB). Sur chemin de séchage, les observations montrent une isotropie microstructurale du sol. L’évolution de la porosité est examinée à partir de mesures par porosimétrie au mercure, confirmées par des images seuillées de photos MEB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Rawas AA, McGown A (1999) Microstructure of Omani expansive soils. Can Geotech J 36:272–290

    Article  Google Scholar 

  • Aylmore L, Quirk JP (1960) Domain or turbostratic structure of clays. Nature 137:1046–1048

    Article  Google Scholar 

  • Bai X, Smart P (1997) Change in microstructure of kaolin in consolidation and undrained shear. Géotechnique 47(5):1009–1017

    Article  Google Scholar 

  • Barton CM (1974) The micromorphological soil-investigation work of Dr. Lafeber. In: Rutherford GK (ed) Soil microscopy. The Limestone Press, Kingston, Ontario, pp 1–19

    Google Scholar 

  • Cetin H (2004) Soil-particle and pore orientations during consolidation of cohesive soils. Eng Geol 73:1–11. doi:10.1016/j.enggeo.2003.11.006

    Article  Google Scholar 

  • Cetin H, Söylemez M (2004) Soil-particle and pore orientations during drained and undrained shear of a cohesive sandy silt–clay soil. Can Geotech J 41:1127–1138. doi:10.1139/T04-055

    Article  Google Scholar 

  • Cetin H, Fener M, Söylemez M, Günaydin O (2007) Soil structure changes during compaction of a cohesive soil. Eng Geol 92:38–48. doi:10.1016/j.enggeo.2007.03.005

    Article  Google Scholar 

  • Collins K, McGown A (1974) The form and function of microfabric features in a variety of natural soils. Géotechnique 24(2):223–254

    Article  Google Scholar 

  • Crampton CB (1974) Micro shear-fabrics in soils of the Canadian north. In: Rutherford GK (ed) Soil microscopy. The Limestone Press, Kingston, Ontario, pp 655–664

    Google Scholar 

  • Dangla P (2001) Plasticity and hysteresis [Plasticité et Hystérésis]. In: Coussy O, Fleureau JM (eds) Mechanics of unsaturated soils. Hermès, Paris, pp 231–273

    Google Scholar 

  • Delage P, Lefebvre G (1984) Study of the structure of an sensitive Champlain clay and of its evolution during consolidation. Can Geotech J 21(1):21–35

    Article  Google Scholar 

  • Delage P, Pellerin M (1984) Influence of lyophilization on the structure of a sensitive clay from Quebec [Influence de la lyophilisation sur la structure d’une argile sensible du Québec]. Clay Min 19(2):151–160

    Article  Google Scholar 

  • Delage P, Audiguier M, Cui YJ, Howatt MD (1996) Microstructure of a compacted silt. Can Geotech J 33:150–158

    Article  Google Scholar 

  • Diamond S (1971) Microstructure and pore structure of impact-compacted clays. Clays Clay Min 19:239–249

    Article  Google Scholar 

  • Dudoignon P, Pantet A, Carrara L, Velde B (2001) Macro–micro measurement of particle arrangement in sheared kaolinitic matrices. Géotechnique 51(6):493–499. doi:10.1680/geot.2001.51.6.493

    Article  Google Scholar 

  • Dumont M, Taibi S, Fleureau JM, Abou-Bekr N, Saouab A (2011) A thermo-hydro-mechanical model for unsaturated soils based on the effective stress concept. Int J Num Anal Meth Geomech 35(12):1299–1317. doi:10.1002/nag.952

    Article  Google Scholar 

  • Fleureau JM, Kheirbek-Saoud S, Taibi S, Soemitro R (1993) Behaviour of clayey soils on drying-wetting paths. Can Geotech J 30(2):287–296

    Article  Google Scholar 

  • Fleureau JM, Verbrugge JC, Huergo PJ, Gomes-Correia A, Kheirbek-Saoud S (2002) Description and modelling of the drying and wetting paths of compacted soils. Can Geotech J 39:1341–1357

    Article  Google Scholar 

  • Geremew Z, Audiguier M, Cojean R (2009) Analysis of the behaviour of a natural expansive soil under cyclic drying and wetting [Analyse du comportement d’un sol argileux sous sollicitations hydriques cycliques]. Bull Eng Geol Environ 68(3):421–436

    Article  Google Scholar 

  • Guillot X (2001) Coupling between microscopic properties and mechanical behaviour of a clayey material [Couplage entre propriétés microscopiques et comportement mécanique d’un matériau argileux]. Doctoral dissertation (in french), Ecole Centrale Paris, France, p 66

  • Hammad T (2010) Behaviour of deepwater marine sediments: a multiscale approach [Comportement des sédiments marins de grande profondeur: approche multiéchelle], Doctoral dissertation (in french), Ecole Centrale Paris, France, p 8–12

  • Hattab M (2011) Critical state notion and microstructural considerations in clays. CR Mécanique 339:719–726. doi:10.1016/j.crme.2011.07.007

    Article  Google Scholar 

  • Hattab M, Fleureau JM (2010) Experimental study of kaolin particle orientation mechanism. Géotechnique 60(5):323–331

    Article  Google Scholar 

  • Hattab M, Fleureau JM (2011) Experimental analysis of kaolinite particle orientation during triaxial path. Int J Num Anal Meth Geomech 35(5):947–968

    Article  Google Scholar 

  • Hattab M, Bouziri-Adrouche S, Fleureau JM (2010) Evolution of the microtexture of a matrix of kaolinite with an axisymmetric triaxial path [Evolution de la microtexture d’une matrice kaolinitique sur chemin triaxial axisymétrique]. Can Geotech J 47:38–48

    Article  Google Scholar 

  • Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohesive-Frict Mater 5(5):341–371

    Article  Google Scholar 

  • Higo Y, Oka F, Kimoto S, Sanagawa T, Matsuhima Y (2011) Observation of microstructural changes and strain localization of unsaturated sands using Microfocus X-ray CT. Adv Bifurcation Degrad Geomater 11:37–43

    Article  Google Scholar 

  • Hu LB, Péron H, Hueckel T, Laloui L (2012) Desiccation shrinkage of non-clayey soils: multi-physics mechanisms and a microstructural model. Int J Num Anal Meth Geomech. doi:10.1002/nag.2108

    Google Scholar 

  • Ingles OG, Lafeber D (1966) The influence of volume defects on the strength and strength isotrophy of stabilized clays. Eng Geol 1(4):305–310

    Article  Google Scholar 

  • Khalili N, Geiser F, Blight G (2004) Effective stress in unsaturated soils: review with new evidence. Int J Geomech 4(2):115–126. doi:10.1061/(ASCE)1532-3641(2004)4:2(115)

    Article  Google Scholar 

  • Kohgo Y, Nakano M, Miyazaki T (1993) Theoretical aspects of constitutive modeling for unsaturated soils. Soils Found 33(4):49–63

    Article  Google Scholar 

  • Laribi S, Jouffrey B, Fleureau JM (2005) On observation of freeze-dried smectite plane views of nano-layers. Appl Phys Lett 86:231915

    Article  Google Scholar 

  • Martin RT, Ladd CC (1975) Fabric of consolidated kaolinite. Clays Clay Min 23(1):17–25

    Article  Google Scholar 

  • Mitchell JK (1956) The fabric of natural clays and its relation to engineering properties. Proc Highw Res Board 35:693–713

    Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New Jersey

    Google Scholar 

  • Morgenstern NR, Tchalenko JS (1967) Microscopic structures in Kaolin subjected in direct shear. Géotechnique 17(4):309–328. doi:10.1680/geot.1967.17.4.309

    Article  Google Scholar 

  • Murphy CP, Bullock P, Biswell KJ (1977) The measurement and characterization of voids in soil thin sections by image analysis. Part II applications. J Soil Sci 28:509–518

    Article  Google Scholar 

  • Péron H (2008) Desiccation cracking of soils. Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland

  • Péron H, Laloui L, Hueckel T, Hu L (2006) Experimental study of desiccation of soil. In: Miller et al. (eds) UNSAT 2006: ASCE Geot Spec Pub 147(1):1073–1084

  • Pusch R (1966) Quick-clay microstructure. Eng Geo 1(6):433–443

    Google Scholar 

  • Pusch R (1970) Microstructural changes in soft quick clay at failure. Can Geotech J 7(1):1–7

    Article  Google Scholar 

  • Seed HB, Chan CK (1959) Structure and strength characteristics of compacted clays. J Soil Mech Found Div Proc ASCE 85(5):87–128

    Google Scholar 

  • Sloane RL, Kell TR (1966) The fabric of mechanically compacted kaolin. Clays and Clay Min. Proceedings of the 14th Nature Clay Conference: 289–296

  • Sloane RL, Nowatzki EA (1967) Electron-optical study of fabric changes accompanying shear in a kaolin clay. Proceedings of the 3rd Pan-American conference on soil mechanics and foundation engineering, Caracas, 1:215–225

  • Souli H (2006) Hydro-mechanical and physico-chemical studies of two clays in the presence of metal cations [Etudes hydromécanique et physico-chimique de deux argiles en présence de cations métalliques], Doctoral dissertation (in french), Ecole Centrale Paris, France

  • Souli H, Fleureau JM, Kbir-Ariguib N, Trabelsi-Ayadi M (2010) Changes in the fabric of a Tunisian clayey soil during wetting. Clay Min 45:315–326

    Article  Google Scholar 

  • Tchalenko JS (1968) The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics 6:159–174

    Article  Google Scholar 

  • Tessier D (1984) Experimental study of the organization of clayey materials [Etude expérimentale de l’organisation des matériaux argileux]. Doctoral dissertation (in french), Paris university, France

  • Van-Damme H (2001) Water and its representation [L’eau et sa représentation]. In: Coussy O, Fleureau JM (eds) Mechanics of unsaturated soils (in french). Hermès, Paris, pp 23–68

    Google Scholar 

  • Yoshinaka R, Kazama H (1973) Microstructure of compacted kaolin clay. Soils Found 13:19–34

    Article  Google Scholar 

  • Zerhouni MI (1991) Role of negative pore pressure in the soil behaviour [Rôle de la pression interstitielle négative dans le comportement des sols]. Doctoral dissertation (in french), Ecole Centrale Paris, France

Download references

Acknowledgments

This work was supported by the China Scholarship Council (CSC) and the GNR FORPRO project <Fissuration des argiles liée à la desiccation—Couplage des approches macroscopiques et microstructurales>.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Hattab, M., Fleureau, JM. et al. Micro–macro-experimental study of two clayey materials on drying paths. Bull Eng Geol Environ 72, 495–508 (2013). https://doi.org/10.1007/s10064-013-0513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0513-4

Keywords

Mots clés

Navigation