Skip to main content

Advertisement

Log in

Geological challenges in constructing the proposed Geba dam site, northern Ethiopia

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

It is proposed to construct a dam across the Geba River, Ethiopia. The paper reports the engineering geological investigations undertaken, including mapping, discontinuity surveys, core drilling, water absorption testing and sampling for laboratory tests. The complexity of the site, with limestones and interbedded limestone-shale horizons, is indicated by the variability of the RQD and Lugeon values. Of the 63 tests undertaken, some two-thirds had Lugeon values implying grouting was necessary. Following removal and replacement of the alluvial deposits in the central area, a grout curtain including two to three rows of grouting holes was recommended to a depth of 100 m for the left abutment, 35 m for the central foundation and 60 m for the right abutment.

Résumé

La construction d’un barrage sur le fleuve Geba, en Ethiopie, est projetée. L’article présente les reconnaissances géologiques et géotechniques réalisées, comprenant une cartographie, des levers de discontinuités, des carottages, des essais d’absorption d’eau et des échantillonnages pour les essais de laboratoire. La complexité du site, avec des formations calcaires et des alternances de schistes et calcaires, se traduit par des valeurs de RQD et des résultats d’essais Lugeon très divers. Sur les 63 essais Lugeon réalisés, environ les deux tiers présentent des valeurs impliquant des travaux d’injection. Après l’enlèvement et le remplacement des dépôts alluviaux dans la zone centrale de la fondation, un écran d’injection constitué de deux à trois rangées de forages d’injection a été recommandé jusqu’à une profondeur de 100 m pour l’appui de rive gauche, 35 m pour la partie centrale de la fondation et 60 m pour l’appui de rive droite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdulkadir M (2009) Assessment of micro-dam irrigation projects and runoff predictions for ungauged catchments in northern Ethiopia. PhD dissertation, Muenster University, Germany

  • Angulo B, Morales T, Uriarte JA, Antigüedad A (2011) Hydraulic conductivity characterization of a karst recharge area using water injection tests and electrical resistivity logging. Eng Geol 117:90–96

    Article  Google Scholar 

  • Berhane G (2010a) Geological, geophysical and engineering geological investigation of a leaky micro-dam in the northern Ethiopia. Agric Eng Int CIGR J 12(1):31–46

    Google Scholar 

  • Berhane G (2010b) Engineering geological soil and rock characterization in the Mekelle town, northern Ethiopia: implications to engineering practice. Momona Ethiop J Sci 2(2):64–86

    Google Scholar 

  • Berhane G, Ayenew T (2010) Soil and rock characterization in the Mekele area, northern Ethiopia. Int J Earth Sci Eng 3(6):762–774

    Google Scholar 

  • Beyth M (1971) The geology of central and western Tigray. Unpublished report, Ethiopian Institute of Geological Survey (EIGS), Addis Ababa

  • Beyth M (1972) Paleozoic sedimentary basin of Mekelle Outlier, northern Ethiopia. Am Assoc Pet Geol Bull 56:2426–2439

    Google Scholar 

  • Bonacci O, Roje-Bonacci T (2008) Water losses from the Ricice reservoir built in the Dinaric karst. Eng Geol 99:121–127

    Article  Google Scholar 

  • Bosellini A, Russo A, Fantozzi PL, Assefa G, Tadesse S (1997) The Mesozoic succession of the Mekelle Outlier (Tigrai Province, Ethiopia). Mem Sci Geol 49:95–116

    Google Scholar 

  • Camilo Quinones-Rozo PE (2010) Lugeon test interpretation, revisited. In: Proceedings of the 30th annual USSD conference Sacramento, California, 12–16 Apr 2010, pp 405–414

  • Deere DU (1964) Technical description of cores for engineering purposes. Rock Mech Eng Geol 1:18–22

    Google Scholar 

  • Deere DU, Deere DW (1988) The rock quality designation (RQD) index in practice. In: Kirakaldie L (ed) Rock Classification systems for engineering purposes. ASTM special publication 984. American Society for Testing Materials, Philadelphia, pp 91–101

    Chapter  Google Scholar 

  • Desta LT (2005) Reservoir siltation in Ethiopia: causes, source areas and management options. PhD dissertation, University of Bonn, Germany

  • Ez Eldin MAM, Huiming T, Bahwi NH, Faraw AG (2007) Geological, soil and rock mass evaluation for proposed hydroelectric power plant at Sennar Dam, Sudan. J Appl Sci 7(22):3477–3484

    Article  Google Scholar 

  • Foyo A, Tomillo C, Maycotte JI, Willis P (1997) Geological features, permeability and groutability characteristics of the Zimapan Dam foundation, Hidalgo State, Mexico. Eng Geol 46(2):157–174

    Article  Google Scholar 

  • Foyo A, Sanchez MA, Tomillo C (2005) A proposal for a Secondary Permeability Index obtained from water pressure tests in dam foundations. Eng Geol 77:69–82

    Article  Google Scholar 

  • Ghafoori M, Lashkaripour GR, Tarigh Azali S (2011) Investigation of the geological and geotechnical characteristics of Daroongar dam, Northeast Iran. Geotech Geol Eng 29:961–975. doi:10.1007/s10706-011-9429-6

  • Ghazifard A, Heidari E, Hashemi M, Hangara A (2006) Evaluation of engineering geological characteristics for the Kuhrang III dam site, Iran. In: 10th IAEG international congress, 6–10 Sept 2006, Nottingham, United Kingdom

  • Gonzalez-Quijano M (2006) Groundwater modelling of the Tsinkanet catchment: a MODFLOW approach to evaluate the impact of small reservoirs on groundwater recharge. M.Sc. thesis, University of Ghent and University of Brussels, Belgium

  • Goodman R, Moye D, Shalkwyk A, Javandel I (1965) Groundwater inflow during tunnel driving. Bull Assoc Eng Geol 2:39–56

    Google Scholar 

  • Gunay G, Milanovic P (2005) Karst engineering studies at the Akkopru reservoir area, SW of Turkey. In: Proceedings of the international conference and field seminars “water resources and environmental problems in Karst”, Belgrade and Kotor, Serbia and Montenegro, pp 651–658

  • Gurocak Z, Alemdag S (2011) Assessment of permeability and injection depth at the Atasu dam site (Turkey) based on experimental and numerical analyses. Bull Eng Geol Environ. doi:10.1007/s10064-011-0400-9

  • Hamm SY, Kim M, Cheong JY, Kim JY, Son M, Kim TW (2007) Relationship between hydraulic conductivity and fracture properties estimated from packer tests and borehole data in a fractured granite. Eng Geol 92:73–87

    Article  Google Scholar 

  • Haregeweyn N, Poesen J, Nyssen J, Verstraeten G, de Vente J, Govers G, Deckers S, Moeyersons J (2005) Specific sediment yield in Tigray-northern Ethiopia: assessment and semi-quantitative modelling. Geomorphology 69:315–331

    Article  Google Scholar 

  • Heuer R (1995) A quantitative, empirical and theoretical approach on water flow into tunnels. In: Rapid excavation and tunneling conference, San Francisco, CA, 18–21 June

  • Houlsby AC (1976) Routine interpretation of the Lugeon water test. Q J Eng Geol 9:303–313

    Article  Google Scholar 

  • Houlsby AC (1990) Construction and design of cement grouting: a guide to grouting in rock foundation. Wiley, New Jersey

    Google Scholar 

  • ISRM (1981) Suggested methods for the quantitative description of discontinuities in rock masses. In: Barton N (ed) Rock characterization, testing and monitoring. Pergamon, Oxford

    Google Scholar 

  • Izharul H, Hashmi FAS (1983) Permeability tests at the Simly Dam Project. Bull Eng Geol Environ 26–27(1):433–438

    Google Scholar 

  • Kiraly L (1969) Anisotropy and heterogeneity of permeability in fractured limestones. Eclogae Geol Helv 62(2):613–619

    Google Scholar 

  • Kiraly L (1978) Definition of the hydrogeological unit. Bull Cent Hydrogeol 2:83–216

    Google Scholar 

  • Koutsoyiannis D (2011) Scale of water resources development and sustainability: small is beautiful, large is great. Hydrol Sci J 56(4):553–575

    Article  Google Scholar 

  • Lee CH, Farmer I (1993) Fluid flow in discontinuous rocks. Chapman & Hall, New York

    Google Scholar 

  • Lee EJ, Schwab KJ (2005) Drinking water distribution systems in developing countries. J Water Health 3(2):109–127

    Google Scholar 

  • Levitte D (1970) The geology of Mekele (report on the geology of the central part of sheet ND 37–11). Geological Survey of Ethiopia, Addis Ababa

    Google Scholar 

  • Lugeon M (1933) Barrages et Geologie. Dunod, Paris

    Google Scholar 

  • Mengesha T, Tadiwos C, Workineh H (1996) Explanation of the geological map of Ethiopia, scale 1:2,000,000. Ethiopian Institute of Geological Surveys Bull. No. 3

  • Mollah MA, Sayed SAS (1995) Assessment of in situ permeability with emphasis on packer testing in Kuwait. Eng Geol 39:217–231

    Article  Google Scholar 

  • Morrow CA (2000) Permeability of deep drillhole core samples. In: Proceedings of the international workshop on the Nojima fault core and Borehole analysis, USGS

  • Mozafari M, Raeisi E, Zare M (2011) Water leakage paths in the Doosti Dam, Turkmenistan and Iran. Environ Earth Sci. doi:10.1007/s12665-011-1069-x

  • Nappi M, Esposito L, Piscopo V, Rega G (2005) Hydraulic characterization of some arenaceous rocks of Molise (Southern Italy) through outcropping measurements and Lugeon tests. Eng Geol 81:54–64

    Article  Google Scholar 

  • Nedaw D, Walraevens K (2009) The positive effect of micro-dams for groundwater enhancement: a case study around Tsinkanet and Rubafeleg area, Tigray, northern Ethiopia. Momona Ethiop J Sci 1(1):59–73

    Google Scholar 

  • Nonveiller E (1989) Grouting theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Ozsan A, Akin M (2002) Engineering geological assessment of the proposed Urus Dam, Turkey. Eng Geol 66:271–281

    Article  Google Scholar 

  • Ozsan A, Karpuz C (1996) Geotechnical rock-mass evaluation of the Anamur dam site, Turkey. Eng Geol 42:65–70

    Article  Google Scholar 

  • Rockware (2010) Rockworks15 manual, 3rd edn. Rockware, Inc., USA

    Google Scholar 

  • Sharghi Y, Siahkoohi H, Alinia F, Moarefvan P (2010) Estimation of Lugeon number at the abutments of Bakhtyari dam site using seismic tomography. Aust J Basic Appl Sci 4(2):274–285

    Google Scholar 

  • Snow DT (1968) Rock fracture spacing, openings and porosities. J Soil Mech Found Eng 94(1):73–92

    Google Scholar 

  • United Nations Environment Programme (2002) Vital water graphics: an overview of the state of the world’s fresh and marine waters. United Nations, Nairobi

    Google Scholar 

  • United Nations Population Division (2002) World urbanization prospects: the 2001 revision. United Nations, New York

    Google Scholar 

  • United Nations Population Division (2010) World urbanization prospects: the 2009 revision. United Nations, New York

    Google Scholar 

  • Uromeihy A, Farrokhi R (2011) Evaluating groutability at the Kamal-Saleh Dam based on Lugeon tests. Bull Eng Geol Environ. doi:10.1007/s10064-011-0382-7

  • Walraevens K, Vandecasteele I, Martens K, Nyssen J, Moeyersons J, Gebreyohannes T, De Smedt F, Poesen J, Deckers J, Van Camp M (2009) Groundwater recharge and flow in a small mountain catchment in northern Ethiopia. Hydrol Sci J 54(4):739–753

    Article  Google Scholar 

  • Wolela A (2008) Sedimentation of the Triassic–Jurassic Adigrat Sandstone Formation, Blue Nile (Abay) Basin, Ethiopia. J Afr Earth Sci 52:30–42

    Article  Google Scholar 

  • WWDSE (2007) Evaluation of Aynalem wellfield and selection of prospective well fields around Mekelle Town for water supply source. Unpublished technical report, Addis Ababa

  • Yamaguchi Y, Shibuichi H, Matsumoto N (1997) Permeability evaluation of jointed rock masses using high viscosity fluid tests. Int J Rock Mech Min Sci 34:344.e1–344.e15

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the Department of Earth Science of Mekelle University for providing logistic support to conduct the fieldwork. Thanks also to the Flemish Interuniversity Council—University Cooperation for Development (VLIR-UOS) for the short research stay grant at Ghent University, Belgium, which allowed the first author to prepare this article. We appreciate the data provided by the Tigray Water Resource, Mines and Energy Bureau and Addis Geosystems PLC and the opportunity given to the first author to work with them during the investigation program. Thanks are also given to the staff at the Laboratory for Applied Geology and Hydrogeology of Ghent University for their assistance during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebremedhin Berhane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhane, G., Walraevens, K. Geological challenges in constructing the proposed Geba dam site, northern Ethiopia. Bull Eng Geol Environ 72, 339–352 (2013). https://doi.org/10.1007/s10064-013-0480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-013-0480-9

Keywords

Mots clés

Navigation