Skip to main content
Log in

Study on swelling properties of an expansive soil deposit in Saskatchewan, Canada

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The main objective of this paper was to study the swelling properties of Regina clay. The deposit comprises a topsoil (surface to 0.3 m depth), an expansive clay (0.3–8 m), and a bottom till (8–9 m). High liquid limit (70 ± 15 %) and plastic limit (33 ± 4 %) indicated high water retention and adsorption capacity for the clay. Irrespective of the cover type (vegetation and cracked road), the field water content in summer closely matched the plastic limit. The clay was characterized by medium-to-high swelling that was best predicted by SP = 0.16 (I p)1.188. The soil had 51 % clay minerals including smectite (32 %), illite (7 %), kaolinite (5 %), and chlorite (3 %). With a CEC of 40 cmol(+)/kg, Ca2+ and Mg2+ were found to be the main exchangeable cations: the specific surface area was 50 m2/g. The SP and P s for a 1.2 m deep sample measured 12 % and 260 kPa, respectively, and the estimated surface heave of 180 mm gradually diminished to 3.6 m depth. These values matched well with consistency-based correlations.

Résumé

L’objectif principal de cet article était l’étude des propriétés de gonflement de l’argile de Regina. La formation géologique comprend un niveau supérieur (de la surface à 0,3 m de profondeur), l’argile gonflante (de 0,3 m à 8 m de profondeur) et un niveau inférieur morainique (entre 8 m et 9 m de profondeur). Les fortes limites de liquidité (70 ± 15 %) et limites de plasticité (33 ± 4 %) indiquaient une forte capacité de rétention d’eau et une forte capacité d’adsorption du sol argileux. Indépendamment du type de couverture (végétation ou route fissurée), la teneur en eau in situ, en été, correspondait à la limite de plasticité. Le sol argileux présentait un potentiel de gonflement moyen à élevé qui était bien prévu par la relation SP = 0,16 (Ip)1,188. Le sol argileux contenait 51 % de minéraux argileux dont des smectites (32 %), de l’illite (7 %), de la kaolinite (5 %) et de la chlorite (3 %). Avec une CEC de 40 cmol(+)/kg, les ions Ca2+ et Mg2+ se sont révélés être les principaux cations échangeables. La surface spécifique était de 50 m2/g. Le potentiel de gonflement et la pression de gonflement pour un échantillon prélevé à 1,2 m de profondeur donnaient respectivement 12 % et 260 kPa. Le soulèvement de surface était estimé à 180 mm pour diminuer progressivement à 3,6 m de profondeur. Ces valeurs correspondaient bien aux relations établies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acton DF, Clayton JS, Ellis JG, Christiansen EA, Kupsch WO (1960) Physiographic divisions of Saskatchewan. Saskatchewan Research Council, Saskatoon Map 1

    Google Scholar 

  • Azam S (2007) Study on the swelling behaviour of blended clay-sand soils. J Geotech Geol Eng 25:369–381

    Article  Google Scholar 

  • Azam S, Wilson GW (2006) Volume change behavior of a fissured expansive clay containing anhydrous calcium sulfate. In: Proceedings of the 4th international conference on unsaturated soils, vol 1, Arizona, pp 906–915

  • Azam S, Abduljauwad SN, Al-Shayea NA, Al-Amoudi OSB (2000) Effect of calcium sulfate on swelling potential of an expansive clay. Geotech Test J 23:389–403

    Article  Google Scholar 

  • Azam S, Hu Y, Chowdhury R (2009) Sensor installation for field monitoring in expansive soils. In: Proceedings of 62nd Canadian geotechnical conference, Halifax, pp 917–922

  • Braman DR, Sweet AR, Lerbekmo JF (1999) Upper Cretaceous-Lower Tertiary lithostratigraphic relationships of three cores from Alberta, Saskatchewan, and Manitoba, Canada. Can J Earth Sci 36:669–683

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1932) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Cassagrande A (1948) Classification and identification of soils. J Transp Eng 113:901–930

    Google Scholar 

  • Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech Test J 25:1–7

    Google Scholar 

  • Christiansen EA (1979) The Wisconsinan deglaciation of Southern Saskatchewan and adjacent areas. Can J Earth Sci 116:913–938

    Article  Google Scholar 

  • Christiansen EA, Saure EK (2002) Stratigraphy and structure of Pleistocene collapse in the Regina Low, Saskatchewan, Canada. Can J Earth Sci 39:1411–1423

    Article  Google Scholar 

  • Dakshanamanty V, Raman V (1973) A simple method of identifying an expansive soil. Soils Found Jpn Soc Soil Mech Found Eng 13:97–104

    Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  • Hamilton JJ (1965) Shallow foundations on swelling clays in Western Canada. In: Proceedings of the international research and engineering conference on expansive clay soils, vol 2. Texas A&M University, pp 183–207

  • Hendershot WH, Lalande H, Duquette M (2008) Ion exchange and exchangeable cations. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science, Lewis Publishers, Canada

  • Holtz WG, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Hu Y, Hubble DW (2005) Failure conditions of asbestos cement water mains. Can Geotech J 34:608–621

    Google Scholar 

  • Hu Y, Vu HQ, Lotfian K (2008) Instrumentation of asbestos cement pipe in expansive soil. In: Proceedings of the international pipelines conference, Atlanta, pp 1–10

  • Ito M, Azam S (2009) Engineering characteristics of a glacio-lacustrine clay deposit in a semi-arid climate. Bull Eng Geol Environ 68:551–557

    Article  Google Scholar 

  • Ito M, Azam S (2010) Determination of swelling and shrinkage properties of undisturbed expansive soils. Geotech Geol Eng J 28:413–422

    Article  Google Scholar 

  • Kelly AJ, Sauer EK, Barbour SL, Christiansen EA, Widger RA (1995) Deformation of the Deer Creek Bridge by an active landslide in clay shale. Can Geotech J 32:701–724

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behaviour, 3rd edn. Wiley, New York

  • Mollard J, Kozicki P, Adelman T (1998) Some geological, groundwater, geotechnical and geoenvironmental characteristics of the Regina Area, Saskatchewan, Canada. In: Karrow PF (ed) Urban geology of Canadian cities. Geological Association of Canada, Special Paper, Issue, vol 42, pp 147–170

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Nayak NV, Christensen RW (1971) Swelling characteristics of compacted expansive soils. Clays Clay Miner 19:251–261

    Article  Google Scholar 

  • Pollock DH, Oosterveen J, Jones B, Jaques D, Lebedin J (1987) Geology field tour of the Regina area. In: 40th Canadian geotechnical conference, Regina

  • Pruett RJ, Murray HH (1991) Clay mineralogy, alteration history, and economic geology of the Whitemud Formation, Southern Saskatchewan, Canada. Clays Clay Miner 39:586–596

    Article  Google Scholar 

  • Sabtan AA (2005) Geotechnical properties of expansive clay shale in Tabuk, Saudi Arabia. J Asian Earth Sci 25:747–757

    Article  Google Scholar 

  • Seed HB, Woodward RJ, Lundgren R (1962) Prediction of swelling potential for compacted clays. J Soil Mech Found Div 90:53–87

    Google Scholar 

  • Shah I (2011) The performance of a steel basement house in Regina. Report submitted to the Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, SK

  • Shahraki BK, Mehrabi B, Gholizadeh K, Mohammadinasab M (2011) Thermal behavior of calcite as an expansive agent. J Min Metall 47:89–97

    Article  Google Scholar 

  • Simpson MA (2004) Geology and groundwater resources of the Regina area, Saskatchewan. Saskatchewan Research Council, Publication No. 10420-1E04

  • Van der Merwe DH (1964) The prediction of heave from the plasticity index and percentage clay fraction of soils. Civil Eng S Afr 6:103–107

    Google Scholar 

  • Weaver CE (1989) Clays, muds, and shales. In: Developments in sedimentology, vol 44. Elsevier, New York

  • Yoshida RT, Fredlund DG, Hamilton JJ (1983) The prediction of total heave of a slab-on-grade floor on Regina clay. Can Geotech J 20:69–81

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the logistic support from the City of Regina and the National Research Council and the financial assistance from the Communities of Tomorrow. Thanks to the University of Regina for providing laboratory space and computing facilities. Thanks to the Advanced Separation Technologies Division of Natural Resources Canada and the International Test Centre of the University of Regina for conducting soil composition analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Azam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azam, S., Shah, I., Raghunandan, M.E. et al. Study on swelling properties of an expansive soil deposit in Saskatchewan, Canada. Bull Eng Geol Environ 72, 25–35 (2013). https://doi.org/10.1007/s10064-012-0457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0457-0

Keywords

Mots clés

Navigation