Skip to main content
Log in

Quantitative assessment of temperature effect on cone resistance

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The measurements of a strain gauge type cone penetrometer are influenced by the temperature change during penetration. A real-time temperature compensation technique using a fiber Bragg grating (FBG) sensor is suggested to correct the effect of temperature on cone tip resistance. A 7-mm micro cone penetrometer equipped with FBG sensors and electrical strain gauges was developed to evaluate the suggested technique. Design concepts include the cone configuration, sensor installation and the temperature compensation process. It is shown that the measured cone tip resistance is significantly affected by the temperature; the error increasing with increasing temperature change. The cone tip resistance measured by the FBG sensor is effectively corrected by the real-time compensation method. The q c profile of the strain gauge indirectly corrected by the re-penetration test is quite similar to the real-time compensated profile. It is concluded that the proposed real-time temperature compensation using the FBG sensor is an effective technique to obtain reliable cone tip resistance profiles.

Résumé

Les mesures d’un pénétromètre à cône à capteur de déformation sont influencées par les variations de température lors de la pénétration. Une technique de compensation de température en temps réel à l’aide d’un capteur de Bragg est proposée pour corriger l’effet de la température sur la résistance de pointe. Un pénétromètre à cône, miniature, équipé d’un capteur de Bragg et d’un capteur de déformation a été développé pour évaluer la technique proposée. Les concepts du dimensionnement comportent la configuration du cône, l’installation des capteurs et le dispositif de compensation de température. Il est montré que la résistance de pointe du cône est significativement affectée par la température, l’erreur augmentant avec les variations de température. La résistance de pointe du cône mesurée par le capteur de Bragg est efficacement corrigée par le dispositif de compensation de température en temps réel. Le profil qc du capteur de déformation indirectement corrigé par le test de re-pénétration est tout à fait similaire au profil compensé en temps réel. On en conclut que le dispositif de compensation de température en temps réel utilisant le capteur de Bragg, est une technique efficace pour obtenir des données fiables à partir de profils de résistance d’un pénétromètre à cône.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ASTM Standard D5778-12 (2012) Standard test method for electronic friction cone and piezocone penetration testing of soils, Vol.04.08. Annual Book of ASTM Standards, ASTM, West Conshohocken, PA

  • Baligh MM (1986) Undrained deep penetration, I: shear stresses. Geotechnique 36(4):471–485

    Article  Google Scholar 

  • Buteau S, Fortier R, Allard M (2005) Rate-controlled cone penetration tests in permafrost. Can Geotech J 42(1):184–197

    Article  Google Scholar 

  • Campanella RG, Gillespie D, Robertson PK (1982) Pore pressure during cone penetration testing. In: Proceedings of the 2nd European Symposium on Penetration Testing, ESOPT-II, Amsterdam, pp 507–512

  • Gornall W, Amarel T (2003) Applications and techniques for fiber Bragg grating sensor measurements. EXFO Bureligh Products Group Inc., New York

    Google Scholar 

  • Houlsby GT, Teh CI (1988) Analysis of the piezocone in clay. In: Proceedings of the international symposium on penetration testing, ISOPT-1, Orlando, pp 2777–2783

  • ISSMFE (1989) International reference test Procedure for Cone Penetration test (cpt). Report of the ISSMFE technical committee on penetration testing of soils-TC16, with reference to test procedures. Swedish Geotechnical Institute, Linkoping, pp 6–16

  • Kanellopoulos SE, Handerek VA, Rogers AJ (1995) Simultaneous strain and temperature sensing with photogenerated in-fiber gratings. Optics Lett 20(3):333–335

    Article  Google Scholar 

  • Kersey AD, Davis MA, Patrick HJ, LeBlanc M, Koo KP, Askins CG, Putnam MA, Friebele J (1997) Fiber grating sensors. J Lightwave Technol 15(8):1442–1463

    Article  Google Scholar 

  • Kim R, Lee W, Yoon HK, Lee JS (2010) Temperature-compensated cone penetration test mini-cone using fiber optic sensors. Geotech Test J 33(3):243–252

    Google Scholar 

  • Kulhawy FH, Mayne PH (1990) Manual on estimating soil properties for foundation design. Electric Power Research Institute, EPRI, Palo Alto

  • Lee W, Lee WJ, Lee SB, Salgado R (2004) Measurement of pile load transfer using the fiber Bragg grating sensor system. Can Geotech J 41(6):1222–1232

    Article  Google Scholar 

  • Lee W, Shin DH, Yoon HK, Lee JS (2009) Micro-cone penetrometer for more concise subsurface layer detection. Geotech Test J 32(4):358–364

    Google Scholar 

  • Lunne T, Eidsmoen T, Gillespie D, Howland JD (1986) Laboratory and field evaluation of cone penetrometers. In: Proceedings of the ASCE specialty conference: use of in situ tests in geotechnical engineering, Blacksburg, pp 714–729

  • Mayne PW (1991) Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts. Soils Found 31(2):65–76

    Article  Google Scholar 

  • Mayne PW, Rix JG (1993) Gmax-qc relationships for clays. Geotech Test J ASTM 16(1):54–60

    Article  Google Scholar 

  • Post ML, Nebbeling H (1995) Uncertainties in cone penetration testing. In: Proceedings of the international symposium on cone penetration testing, CPT’95, vol 2. Linkoping, Sweden, pp 73–78

  • Robertson PK, Campanella RG, Gillespie D, Greig J (1986) Use of piezometer cone data. In: Proceedings of the ASCE specialty Conference in situ’86: Use of in situ Tests in Geotechnical Engineering, Blacksburg, pp 1263–1280

  • Zhou Z, Thomas WG, Luke H, Ou J (2003) Techniques of advanced FBG sensors: fabrication, demodulation, encapsulation and their application in the structural health monitoring of bridges. Pac Sci Rev 5(1):116–121

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-D01067) and by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C., Kim, R., Lee, J.S. et al. Quantitative assessment of temperature effect on cone resistance. Bull Eng Geol Environ 72, 3–13 (2013). https://doi.org/10.1007/s10064-012-0454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0454-3

Keywords

Mots clés

Navigation