Skip to main content
Log in

Hysteretic soil water characteristics and cyclic swell–shrink paths of compacted expansive soils

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The investigation of the hydromechanical behavior of unsaturated expansive soil depends on the determination of hysteretic soil water characteristic curves (HSWCCs). This research investigates the HSWCCs of two natural expansive soils initially compacted at optimum moisture content (OMC) and maximum dry density (MDD) and then saturated to their maximum expansion state to ensure identical capillary history. Filter paper, pressure plate and chilled mirror hygrometer suction measurement techniques were utilized, and corresponding measurements of three-dimensional volume change made. The cyclic swell–shrink paths were deduced in terms of volumetric strain versus either water content or suction. The cyclic three-dimensional volumetric measurements showed a much higher amount of swelling and shrinkage than those determined from one-dimensional measurements. Hydraulic hysteresis rapidly decreased with the swell–shrink cycles as a result of macro-structural stabilization. Under the no/low confining conditions, the swell–shrink cycles generally caused a decrease of global expansion and an increase of global shrinkage. Moreover, a special phenomenon showing a reduction of global shrinkage on significant drying was discovered in the less plastic soil sample.

Résumé

L’analyse du comportement hydromécanique des sols gonflants non saturés nécessite la détermination des courbes caractéristiques du comportement hydrique de ces sols. Cette étude examine ces courbes caractéristiques pour deux sols gonflants naturels, d’abord compactés à la teneur en eau optimale, avec une densité sèche maximale, ensuite saturés jusqu’à leur état de gonflement maximum afin d’obtenir un historique contrôlé de leur humidification. Les techniques du papier filtre, de la mise sous contrainte et des mesures de succion par hygromètre ont été utilisées et les mesures correspondantes des changements de volume réalisées. Les mesures cycliques tridimensionnelles de volume ont montré des amplitudes beaucoup plus grandes de gonflement et de retrait que celles déterminées à partir de mesures unidimensionnelles. L’hystérésis hydrique a diminué rapidement avec les cycles de gonflement-retrait en raison d’une stabilisation macrostructurale. Dans des conditions de confinement nul ou faible, les cycles de gonflement-retrait ont généralement entraîné une diminution du gonflement global et une augmentation du retrait global. Par ailleurs, un phénomène spécial montrant une réduction du retrait global pour des séchages importants a été découvert pour les échantillons de sols les moins plastiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agus SS, Schanz T (2006) Drying, wetting, and suction characteristic curves of a bentonite-sand mixture. Unsaturated Soils 2006, ASCE, Carefree, 2–6 April 2006, pp 1405–1414

  • Agus SS, Schanz T, Fredlund DG (2010) Measurements of suction versus water content for bentonite-sand mixtures. Can Geotech J 47:583–594

    Article  Google Scholar 

  • Alonso EE, Lloret A, Gens A, Yang DQ (1995) Experimental behavior of highly expansive double-structure clay. In: Alonso EE, Delage P (eds) Unsaturated soils, Taylor & Francis, Paris, pp 11–16

  • Alonso EE, Vaunat J, Gens A (1999) Modeling the mechanical behavior of expansive clays. Eng Geol 54:173–183

    Article  Google Scholar 

  • Alonso EE, Romero E, Hoffmann C, García-Escudero E (2005) Expansive bentonite-sand mixtures in cyclic controlled-suction drying and wetting. Eng Geol 81:213–226

    Article  Google Scholar 

  • ASTM (2011) Annual book of ASTM standards. Volume 04.08 Soil and Rock (I): D420–D5876 and vol 4.09 Soil and Rock (II): D5877–latest, west Conshohocken

  • Birle E, Heyer D, Vogt N (2008) Influence of the initial water content and dry density on the soil-water retention curve and the shrinkage behavior of a compacted clay. Acta Geotech 3:191–200

    Article  Google Scholar 

  • Blatz JA, Cui Y-J, Oldecop L (2008) Vapor equilibrium and osmotic technique for suction control. Geotech Geol Eng 26:661–673

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University Hydrology Paper 27(3):22–27

    Google Scholar 

  • BS 1377 (1990) British Standard Methods of testing for soils for civil engineering purposes. British Standards Institution, London

  • Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene (EGME) method. ASTM Geotech Test J 25(3):315–321

    Google Scholar 

  • Chen LX, Miller GA, Kibbey TCG (2007) Rapid pseudo-static measurement of hysteretic capillary pressure-saturation relationships in unconsolidated porous media. Geotech Test J 30(6):1–10

    Google Scholar 

  • Cui YJ, Loiseau C, Delage P (2002) Microstructure change of a confined swelling soil due to suction controlled hydration. In: Jucá T, de Campos TMP, Marinho FAM (eds) Unsaturated soils. Balkema Publishers, Lisse, pp 593–598

    Google Scholar 

  • Delage P, Howat M, Cui YJ (1998) The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Eng Geol 50(1–2):31–48

    Article  Google Scholar 

  • Dif AE, Bluemel WF (1991) Expansive soils under cyclic drying and wetting. Geotech Test J 14(1):96–102

    Article  Google Scholar 

  • Ferber V, Auriol JC, David JP (2004) Micro-structure and swelling behavior of compacted clayey soils: a quantitative approach. Engineering Geology for Infrastructure Planning in Europe, Springer, Berlin, pp 275–284

    Google Scholar 

  • Ferber V, Auriol JC, Magnan JP, Cui YJ, De Laure E, Gerente C (2006) A microstructural model for the volume changes of unsaturated clayey soils due to wetting. Unsaturated Soils 2006, Carefree, 2–6 April 2006, vol 1, pp 861–872

  • Fityus S, Buzzi O (2009) The place of expansive clays in the framework of unsaturated soil mechanics. Appl Clay Sci 43:150–155

    Article  Google Scholar 

  • Fleureau JM, Kheirbek-Saoud S, Soemitro R, Taibi S (1993) Behavior of clayey soils on drying-wetting paths. Can Geotech J 30:287–296

    Article  Google Scholar 

  • Fleureau JM, Verbrugge JC, Huergo PJ, Correia AG, Kheirbek-Saoud S (2002) Aspects of the behavior of compacted clayey soils on drying and wetting paths. Can Geotech J 39:1341–1357

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York, p 517

    Book  Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil water characteristic curve. Can Geotech J 31:521–532

    Article  Google Scholar 

  • Han KK, Rahardjo H, Broms BB (1995) Effect of hysteresis on the shear strength of a residual soil. In: Alonso EE, Delage P (eds) Unsaturated soils, Taylor & Francis, Paris, pp 499–504

  • Konyai S, Sriboonlue V, Trelo-ges V, Muangson N (2006) Hysteresis of water retention curve of saline soil. Unsaturated Soils 2006, ASCE, Carefree, 2–6 April 2006, pp 1394–1404

  • Leong EC, Tripathy S, Rahardjo H (2003) Total suction measurement of unsaturated soils with a device using the chilled-mirror dew-point technique. Géotechnique 53(2):173–182

    Article  Google Scholar 

  • Lin B, Cerato AB (2012a) Prediction of expansive soil swelling based on four micro-scale properties. Bull Eng Geol Environ 71:71–78

    Article  Google Scholar 

  • Lin B, Cerato AB (2012b) Investigation on soil water characteristic curves of untreated and stabilized highly clayey expansive soils. Geotech Geol Eng. doi:10.1007/s10706-012-9499-0

    Google Scholar 

  • Miller CJ, Yesiller N, Yaldo K, Merayyan S (2002) Impact of soil type and compaction conditions on soil water characteristic. J Geotech Geoenviron Eng 128(9):733–742

    Article  Google Scholar 

  • Miller GA, Khoury CN, Muraleetharan KK, Liu C, Kibbey TCG (2008) Effects of soil skeleton deformations on hysteretic soil water characteristic curves: experiments and simulations. Water Resour Res 44:W00C06. doi:10.1029/2007WR006492

    Article  Google Scholar 

  • Muraleetharan KK, Liu C, Wei C, Kibbey TCG, Chen L (2009) An elastoplastic framework for coupling hydraulic and mechanical behavior of unsaturated soils. Int J Plast 25:473–490

    Article  Google Scholar 

  • Nelson JD, Miller DJ (1992) Expansive soils: problems and practice in foundation and pavement engineering. Wiley, New York, p 288

    Google Scholar 

  • Nowamooz H, Masrouri F (2008) Hydromechanical behavior of an expansive bentonite/silt mixture in cyclic suction-controlled drying and wetting tests. Eng Geol 101:154–164

    Article  Google Scholar 

  • Puppala AJ, Punthutaecha K, Vanapalli SK (2006) Soil water characteristic curves of stabilized expansive soils. J Geotech Geoenviron Eng 132(6):736–750

    Article  Google Scholar 

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis. Agronomy 9, 2nd edn. American Society of Agronomy, Madison, pp 159–165

  • Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Eng Geol 54:117–127

    Article  Google Scholar 

  • Sreedeep S, Singh DN (2011) Critical review of the methodologies employed for soil suction measurement. Int J Geomech 11(2):99–104

    Article  Google Scholar 

  • Thakur VKS, Sreedeep S, Singh DN (2005) Parameters affecting soil-water characteristic curves of fine-grained soils. J Geotech Geoenviron Eng 131(4):521–524

    Article  Google Scholar 

  • Thakur VKS, Sreedeep S, Singh DN (2006) Laboratory investigations on extremely high suction measurements for fine-grained soils. Geotech Geol Eng 24:565–578

    Article  Google Scholar 

  • Tinjum JM, Benson CH, Blotz LR (1997) Soil-water characteristic curves for compacted clays. J Geotech Geoenviron Eng 123(11):1060–1069

    Article  Google Scholar 

  • Tripathy S, Subba Rao KS (2009) Cyclic swell–shrink behavior of a compacted expansive soil. Geotech Geol Eng 27:89–103

    Article  Google Scholar 

  • Tripathy S, Subba Rao KS, Fredlund DG (2002) Water content-void ratio swell–shrink paths of compacted expansive soils. Can Geotech J 39:938–959

    Article  Google Scholar 

  • van Genutchen MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vanapalli SK, Fredlund DG, Pufahl DE (1999) The influence of soil structure and stress history on the soil-water characteristics of a compacted till. Géotechnique 49(2):143–159

    Article  Google Scholar 

  • Wang X, Benson C (2004) Leak-free pressure plate extractor for measuring the soil water characteristic curve. ASTM Geotech Test J 27(2):1–10

    Google Scholar 

Download references

Acknowledgments

The financial support from NSF (National Science Foundation) through research Grant No. 0746980 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy B. Cerato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Cerato, A.B. Hysteretic soil water characteristics and cyclic swell–shrink paths of compacted expansive soils. Bull Eng Geol Environ 72, 61–70 (2013). https://doi.org/10.1007/s10064-012-0450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0450-7

Keywords

Mots clés

Navigation