Skip to main content
Log in

Thermal response testing of a fractured hard rock aquifer with and without induced groundwater flow

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This study quantifies experimentally the influence of groundwater on the thermal conductivity measurements via thermal response tests (TRT) in a fractured hard rock with low matrix permeability. An artificial groundwater flow towards a nearby well was induced by groundwater extraction and a TRT performed simultaneously. The results were compared with a TRT performed 24 days later in the same well without groundwater extraction. The effect of the groundwater flow is shown indirectly by the enhanced effective thermal conductivity and directly through the comparison of temperature profiles before and 4 h after both TRTs. Simulations in FEFLOW show that a groundwater flow velocity of 130–1,300 m d−1 through one open horizontal fracture of small volume increases the effective thermal conductivity by 11 % in the studied system.

Résumé

Cette étude quantifie expérimentalement l’influence de l’eau souterraine sur les mesures de conductivité thermique via des essais de réponse thermique (TRT) dans un massif rocheux fracturé présentant une faible perméabilité de matrice. Un écoulement artificiel vers un puits proche a été induit par un pompage et un test TRT a été réalisé simultanément. Les résultats ont été comparés avec un autre test TRT réalisé 24 jours plus tard dans le même puits sans pompage. L’effet de l’écoulement est montré indirectement par la modification de la conductivité thermique effective et directement par la comparaison des profils de température pour les deux tests TRT, avant et pendant les quatre heures suivant les tests. Des simulations numériques avec Feflow montrent qu’une vitesse d’écoulement de 130 à 1300 m j−1 au travers d’une fracture horizontale de faible ouverture augmente la conductivité thermique effective de 11 % dans le système étudié.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BHE:

Borehole heat exchanger

Q :

Heat injection rate per meter of borehole length (W m−1)

R b :

Borehole resistance (K W−1 m−1)

t :

Time (s)

\( \bar{T} \) :

Average fluid temperature of the circulation fluid (°C)

TRT:

Thermal response test

XRD:

X-ray diffraction

λ :

Thermal conductivity (W m−1 K−1)

π :

3.1415

eff:

Effective

in:

At the inlet

gw:

With groundwater extraction

out:

At the outlet

ref:

Reference

0:

Starting

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • Austin WA (1998) Development of an in situ system for measuring ground thermal properties. M.Sc. thesis, Oklahoma State University, Stillwater

  • Banks D (2008) An introduction to thermogeology: ground source heating and cooling. Blackwell, Oxford

    Book  Google Scholar 

  • Boge K, Åndal T, Kjølberg R (2002) Final report for the pregrouting at the T-Baneringen tunnel (stage one, Ullevål-Nydalen). Norwegian Public Roads Administration, Tunnels for the citizens, Report no. 16, pp 1–28

  • Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), EuroGeoSurveys (EGS), UNESCO (2008) International hydrogeological map of Europe 1: 5 000 000. Online: http://www.bgr.de/app/fishy/ihme1500/ (12.01.2010)

  • Chiasson AD, Rees SJ, Spitler JD (2000) A preliminary assessment of the effects of groundwater flow on closed-loop ground source heat pump systems, USA. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta Oklahoma State University, Stillwater

    Google Scholar 

  • Diersch HJG (2009) FEFLOW reference manual. Institute for Water Resources Planning and Systems Research, Berlin, p 292

    Google Scholar 

  • Domenico PA, Schwartz FS (1998) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Eskilson P, Hellström G, Claesson J, Blomberg T, Sanner B (2000). Earth energy designer version 2.0. Blocon software, Sweden

  • Fan R, Jiang YQ, Yao Y, Shiming D, Ma ZL (2007) A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection. Energy 32:2199–2209

    Article  Google Scholar 

  • Fujii H, Itoi R, Fujii J, Uchida Y (2005) Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modelling. Geothermics 34:347–364

    Article  Google Scholar 

  • Gehlin S (1998) Thermal response test. In situ measurements of thermal properties in hard rock. Licentiate thesis, Luleå University of Technology, 37, p 73

  • Gehlin S (2002) Thermal response test. Method development and evaluation. Doctoral thesis, Luleå University of Technology, 2002:39, p 191

  • Gehlin SEA, Hellström G (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energy 28:2221–2238

    Article  Google Scholar 

  • Gehlin SEA, Hellström G, Nordell B (2003) The influence of the thermosiphon effect on the thermal response test. Renew Energy 28:2239–2254

    Article  Google Scholar 

  • Grant MA, Donaldson IG, Bixley PF (1982) Geothermal reservoir engineering. Academic, New York

    Google Scholar 

  • Gustafsson AM (2006) Thermal response test—numerical simulations and analyses. Licentiate thesis, Luleå University of Technology, 2006:14, p 141

  • Gustafsson AM, Westerlund L, Hellström G (2010) CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger. Appl Therm Eng 30:683–691

    Article  Google Scholar 

  • Ingersoll LR (1948) Heat conduction—with engineering and geological application. McGraw-Hill, New York, p 278

    Google Scholar 

  • Jiang YF, Woodbury AD (2006) A full-Bayesian approach to the inverse problem for steady-state groundwater flow and heat transport. Geophys J Int 167:1501–1512

    Article  Google Scholar 

  • Lee CK, Lam HN (2009) Determination of groundwater velocity in thermal response test analysis. Proceedings of Effstock conference in Stockholm, Sweden, 14–17 June, p 8

  • Lim K, Lee S, Lee C (2007) An experimental study on the thermal performance of ground heat exchanger. Exp Therm Fluid Sci 31:985–990

    Article  Google Scholar 

  • Løset F (1981) Geological engineering experience from the sewage tunnel Lysaker–Slemmestad. Rock Blasting Conference, Norwegian Tunneling Association, Oslo, 1–31 November, p 31

  • Løset F (2002) Geology of the Norwegian tunnels. Norwegian Geotechnical Institute, p 90

  • Morland G (1997) Petrology, lithology, bedrock structures, glaciation and sea level. Important factors for groundwater yield and composition of Norwegian bedrock boreholes? Geological Survay of Norway, Rep. 97.122, p 274

  • Nordstrand JS (2001) Energibrønner i fjell—Vurdering av forskjellige metoder for effektuttak ved et demonstrasjonsanlegg. (Rock energy wells—assessment of different methods for energy extraction at a demonstration plant—in Norwegian). Master thesis at the Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology, p 72

  • Pannike S, Koelling M, Panteleit B, Reichling J, Scheps V, Schulz HD (2006) Influence of hydrogeological parameters on temperature variations due to borehole heat exchangers. Grundwasser 11:6–18

    Article  Google Scholar 

  • Pehme PE, Greenhouse JP, Parker BL (2007) The active line source temperature logging technique and its application in fractured rock hydrogeology. J Environ Eng Geoph 12:307–322

    Article  Google Scholar 

  • Philippe M, Bernier M, Marchio D (2009) Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes. Geothermics 38:407–413

    Article  Google Scholar 

  • Ramstad RK (2004) Ground source energy in crystalline bedrock—increased energy extraction by using hydraulic fracturing in boreholes. Doctoral Theses, 2004:161, Norwegian University of Sciences and Technology, p 185

  • Ramstad RK (2011) Grunnvarme i Norge—Kartlegging av økonomisk potensial (Ground source heat in Norway—mapping of its economical potential). NVE report, 5/2011, p 88

  • Ramstad RK, Hilmo BO, Brattli B, Skarphagen H (2007) Ground source energy in crystalline bedrock-increased energy extraction using hydraulic fracturing in boreholes. Bull Eng Geol Environ 66:493–503

    Article  Google Scholar 

  • Ramstad RK, Tiarks H, Midttømme K (2008) Ground source energy—thermal conductivity map in the Oslo region. Poster presented at at the 33rd International Geologic Congress Oslo, NGU’s stand, 6–14 August 2008

  • Rohr-Torp E (1994) Present uplift rates and groundwater potential in Norwegian hard rocks. Geol Surv Nor Bull 426:47–52

    Google Scholar 

  • Sanner B, Hellström G, Spitler J, Gehlin S (2005) Thermal Response Test—current status and world-wide application. In: Proceedings World Geothermal Congress, Antalya, Turkey, p 9

  • Signorelli S, Bassetti S, Pahud D, Kohl T (2007) Numerical evaluation of thermal response tests. Geothermics 36:141–166

    Article  Google Scholar 

  • Wang H, Qi C, Du H, Gu J (2009) Thermal performance of borehole heat exchanger under groundwater flow: a case study from Baoding. Energy and Build 41:1368–1373

    Article  Google Scholar 

  • Witte H (2002) Ground thermal conductivity testing: effects of groundwater on the estimate. Abstract. 3. Kolloquium des Arbeitskreises Geothermik der DGG, Aachen, Germany, 03–04.10

  • Witte H (2007) Advances in geothermal response testing. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption. Springer, Netherlands, pp 177–192

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Helge Skarphagen (Norwegian Institute for Water Research, NIVA) for technical assistance in the field and Allan Krill (Norwegian University of Science and Technology, NTNU) and anonymous reviewers for valuable comments. The project was financed by NTNU, Faculty of Engineering Science and Technology and the Geological Survey of Norway (NGU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko T. Liebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebel, H.T., Huber, K., Frengstad, B.S. et al. Thermal response testing of a fractured hard rock aquifer with and without induced groundwater flow. Bull Eng Geol Environ 71, 435–445 (2012). https://doi.org/10.1007/s10064-012-0422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0422-y

Keywords

Mots clés

Navigation