Skip to main content
Log in

Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Brazilian tests were conducted on an isotropic limestone with different length-to-diameter ratios and various bearing strip widths. The direct tensile strength of the rock specimens was also obtained using direct tension test apparatus and a servo-control testing machine. The Brazilian test was modeled using the computer program (Abaqus 6.7-1) and both smeared rotating crack and cohesive crack models were selected for the analysis of crack propagation. Comparison of the experimental and numerical analyses showed that the results from the smeared rotating crack model were closer to the experimental results than those from the cohesive crack model. Appropriate testing conditions for the Brazilian test are proposed, in order to achieve the results closest to the direct tension test.

Résumé

Des essais brésiliens ont été réalisés sur des calcaires isotropes avec différents ratios longueur/diamètre et différentes largeurs de bandes d’application de la charge. La résistance à la traction directe des échantillons a été aussi obtenue grâce à des essais de traction directe réalisés avec une machine d’essais asservie. L’essai brésilien a été modélisé avec le logiciel Abaqus 6.7-1, utilisant un modèle à fissuration distribuée et un modèle à fissures cohésives. La comparaison entre les résultats expérimentaux et les analyses numériques a montré que le modèle à fissuration distribuée rendait mieux compte des résultats expérimentaux que le modèle à fissures cohésives. Des conditions d’essai appropriées ont été proposées pour l’essai brésilien afin rapprocher les résultats de cet essai de ceux de l’essai de traction directe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Cai M, Kaiser PK (2004) Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. Int J Rock Mech Min Sci 41:CD-ROM

    Google Scholar 

  • Chen CS, Pan E, Amadei B (1998a) Determination of deformability and tensile strength of anisotropic rock using the boundary element method. Int J Rock Mech Min Sci 35:43–61

    Article  Google Scholar 

  • Chen CS, Pan E, Amadei B (1998b) Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int J Rock Mech Min Sci 35:195–218

    Article  Google Scholar 

  • Colback PSB (1966) An analysis of brittle fracture initiation and propagation in the Brazilian test. In: Proceedings of the First congress of the international society of rock mechanics, Lisbon. Proc First Cong Int Soc Rock Mech 1:385–391

    Google Scholar 

  • Cope RJ, Rao PV, Clark LA, Norris P (1980) Modeling of reinforced behavior for finite element analysis of bridge slabs. In: Taylor C et al (eds) Numerical methods for non linear problems, vol 1. Pinerdge Press, Swansea, pp 457–470

    Google Scholar 

  • Crisfield MA, Wills J (1978) Numerical comparisons involving different concrete models, IABSE Reports 54, colloquium on computational mechanics of reinforced concrete. Delf university press, pp 177–187

  • Exadaktylos GE, Kaklis KN (2001) Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically. Int J Rock Mech Min Sci 38:227–243

    Article  Google Scholar 

  • Gupta AK, Akbar H (1984) Cracking in reinforced concrete analysis ‘concrete models’. J Struc Eng ASCE 110(8):1735–1746

    Article  Google Scholar 

  • Hudson JA, Brown ET, Rummel F (1972) The controlled failure of rock discs and rings loaded in diametral compression. Int J Rock Mech Min Sci 9:241–248

    Article  Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103

    Article  Google Scholar 

  • Lavrov A, Vervoort A (2002) Theoretical treatment of tangential loading effects on the Brazilian test stress distribution. Int J Rock Mech Min Sci 39:275–282

    Article  Google Scholar 

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression. Eng Geol 5:173–225

    Article  Google Scholar 

  • Rashid YR (1968) Analysis of prestressed concrete pressure vessels. Nucl Eng Des 7(4):334–355

    Article  Google Scholar 

  • Rocco C, Gueina GV, Planas J, Elices M (1999) Size effect and boundary conditions in the Brazilian test: theoretical analysis. Mater Struct 32:437–444

    Article  Google Scholar 

  • Thuro K, Plinninger RJ, Zah S, Schutz S (2001) Scale effects in rock strength properties. Part 1: unconfined compressive test and Brazilian test. In: Balkema AA (ed) Proceedings of the EUROCK 2001 Symposium. Rock Mechanics-A Challenge for Society, Rotterdam

    Google Scholar 

  • Timoshenko, Goodier (1990) Elastic theory (Xu Zhilun, Trans.). Higher Education Press, Beijing, 1:330

  • Wijk G (1978) Some new theoretical aspects of indirect measurement of the tensile strength of rocks. Int J Rock Mech Min Sci Geomech Abstr 15:149–160

    Article  Google Scholar 

  • Yu Y, Yin J, Zhong Z (2006) Shape effect in the Brazilian tensile strength test and 3D FEM correction. Int J Rock Mech Min Sci 43:623–627

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malekpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahimifar, A., Malekpour, M. Experimental and numerical analysis of indirect and direct tensile strength using fracture mechanics concepts. Bull Eng Geol Environ 71, 269–283 (2012). https://doi.org/10.1007/s10064-011-0402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0402-7

Keywords

Navigation