Skip to main content
Log in

Geotechnical characterization of geomaterial blends with zeolitic tuffs for use as landfill liners

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Mixtures of volcanic and zeolitic tuffs from Jordan with other natural materials such as marl, sand, kaolinite and bentonite were prepared and tested for Proctor compaction in order to determine the best blend to achieve the highest dry density for use in a landfill liner. Compaction tests indicate that volcanic tuffs have higher dry densities than the zeolitic tuffs. The presence of zeolitic tuff in a mix decreases the dry density and increases the optimum moisture content. The study indicated that two mixtures of zeolitic tuff, marl, bentonite, kaolinite and sand gave the highest dry densities which, combined with the high cation exchange capacity of zeolitic tuff and bentonite, provide mixtures suitable for potential low cost landfill liners, if the shrinkage tests confirm that they are appropriate. The liquid limits measured using the cone penetration method of the volcanic tuffs were higher than those obtained using the Casagrande method except for the Rmah Tuff (RT) which showed the reverse. This needs further investigation.

Résumé

Des tufs volcaniques et zéolitiques de Jordanie ont été mélangés à d’autres matériaux naturels tels que des marnes, des sables, de la kaolinite et de la bentonite pour des essais de compactage Proctor afin de déterminer les meilleures associations permettant d’obtenir les plus fortes densités sèches pour des usages en couvertures de remblais. Les essais de compactage indiquent que les tufs volcaniques conduisent à des densités sèches plus fortes que les tufs zéolitiques. La présence de tufs zéolitiques dans les mélanges fait baisser la densité sèche et augmenter la teneur en eau optimale. L’étude a indiqué que deux mélanges de tufs zéolitiques, de marne, de bentonite et de sable ont donné la plus forte densité sèche. Considérant par ailleurs la forte capacité d’échange de cations des tufs zéolitiques et de la bentonite, ces mélanges apparaissent adaptés pour des couvertures économiques de remblais. Les limites de liquidité mesurées sur les tufs volcaniques par la méthode du cône de pénétration étaient plus grandes que celles obtenues par la méthode de Casagrande, sauf pour le tuf de Rmah (RT) qui a donné un résultat opposé. Ceci nécessite de nouvelles investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdullah WS, Alshibli KA, Al-Zou’bi MS (1999) Influence of pore water chemistry on the swelling behavior of compacted clays. Appl Clay Sci 15:447–462

    Article  Google Scholar 

  • ASTM D854-00 (2000) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International

  • ASTM D4318-10 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International

  • ASTM D2435-04 Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International

  • ASTM D698-07e1 (2007) Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International

  • Benson CH, Abichou TH, Olson MA, Bosscher PJ (1995) Winter effects on hydraulic conductivity of compacted clay. J Geotech Eng 121(1):69–79

    Article  Google Scholar 

  • Bernal MP, Lopez-Real JM (1993) Natural zeolites and sepiolites as ammonium and ammonia adsorbent materials. Bioresour Technol 43:27–33

    Article  Google Scholar 

  • Bish F, Guthrie GD (1994) Clays and zeolites. In: Guthrie GD, Mossmann BT (eds) Health effects of mineral dusts. Rev. Mineral, vol 28, pp 168–184

  • Cooney E, Booker NA, Shallcross DC, Stevens GW (1999) Ammonia removal from wastewaters using natural Australian zeolite. I. Characterization of the zeolite. Sep Sci Technol 34(12):2307–2327

    Article  Google Scholar 

  • Daniel DE, Benson CH (1990) Water content-density criteria for compacted soil liners. J Geotech Eng ASCE 116(12):1811–1830

    Article  Google Scholar 

  • Du Q, Liu S, Cao Z, Wang Y (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep Purif Technol 44:229–234

    Article  Google Scholar 

  • Dwairi M (1987) A chemical study of the palogonite tuffs of the Aritain area of Jordan with special reference to the nature, origin and industrial potential of the associated zeolite deposits, unpublished Ph.D. thesis. Hull University, UK

  • Dwairi M (1993) Evaluation of the phillipsite tuff from NE Jordan as a drying agent: Abhath Al-Yarmouk. Pure Sci Eng 2:75–85

    Google Scholar 

  • El-Eswed B, Yousef RI, Alshaaer M, Khalili F, Khoury H (2009) Alkali solid-state conversion of kaolin and zeolite to effective adsorbents for removal of lead from aqueous solution. Desalination Water Treatment 8:124–130

    Article  Google Scholar 

  • Grim RE (1968) Clay mineralogy. McGraw Hill, New York

  • Guo X, Zeng L, Li X (2006) Removal of ammonium and potassium from RO permeate of an anaerobically digested cattle manure by natural zeolite. The Canadian Society for Bioengineering, paper no. 06-117

  • Ibrahim K, Hall A (1995) New occurrences of diagenetic faujasite in the Quaternary tuff of Northeast Jordan. Eur J Mineral 7:1129–1135

    Google Scholar 

  • Ibrahim K, Hall A (1996) The authigenic zeolites of the Aritain volcaniclastic formation, North-East Jordan. Mineralium Deposita 31(6):514–522

    Article  Google Scholar 

  • Jasser D (1978) Investigation of Azraq clays. Natural Resources Authority, internal report, Amman, Jordan

  • Kaya A, Durukan S (2004) Utilization of bentonite-embedded zeolite as clay liner. Appl Clay Sci 25:83–91

    Article  Google Scholar 

  • Kenney TC, Van Veen WA, Swallow MA, Sungalia MA (1992) Hydraulic conductivity of compacted bentonite-sand mixtures. Canad Geotech J 29:638–649

    Article  Google Scholar 

  • Khoury HN (1980) Mineralogy and origin of Azraq clay deposits, Jordan. Dirassat 7:21–31

    Google Scholar 

  • Komine H, Ogata N (1994) Experimental study on swelling characteristics of compacted bentonite. Canad Geotech J 31:478–490

    Article  Google Scholar 

  • Kraus JF, Benson CH, Erickson AE, Chamberlain EJ (1997) Freeze thaw cycling and hydraulic conductivity of bentonitic barriers. J Geotech Geoenviron Eng 123:229–238

    Article  Google Scholar 

  • Liu C-H, Lo KV (2001) Ammonia removal from composting leachate using zeolite. I. Characterization of the zeolite. J Environ Sci Health 39(9):1671–1688

    Article  Google Scholar 

  • Menzies MA, Gallagher K, Hurford A, Yelland A (1997) Red Sea volcanic and the Gulf of Aden non-volcanic margins, Yemen: denudational histories and margin evolution. Geochim Cosmochim Acta 61:2511–2528

    Article  Google Scholar 

  • Nawasreh MK, Pooley FD (1998) Mineralogical distribution and industrial evaluation of Azraq clay minerals in the North Badia Region, Jordan. Presented in the Applied Geology Conference, Leicester

    Google Scholar 

  • NRA (2006) Zeolitic tuff. Natural Resources Authority (NRA) report. Geological Survey Administration, Amman, Jordan (unpublished)

  • Qa’adan M (1992) Mineralogy and origin of the recent deposits in the Azraq Depression, unpublished M.Sc. thesis. University of Jordan, Amman

  • Shaqour F, Jarrar Gh, Kaisi M, Hencher S (2008) Geotechnical and mineralogical characteristics of marl deposits in Jordan. Environ Geol 55(8):1777–1783

    Article  Google Scholar 

  • Sivapullaiah PV, Sridharan A, Stalin VK (2000) Hydraulic conductivity of bentonite sand mixtures. Can Geotech J 37:406–413

    Article  Google Scholar 

  • Stewart DI, Cousens TW, Studds PG, Tay YY (1999) Design parameter for bentonite enhanced sand as a landfill liner. Proceedings of the Institution of Civil Engineers, October 137:189–195

    Google Scholar 

  • Tay YY, Stewart DI, Cousens TW (2001) Shrinkage and desiccation cracking in bentonite-sand landfill liners. Eng Geol 20:263–274

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the University of Jordan for supporting and financing the project (No. 106/2008–2009). The analyses were mostly undertaken at the Department of Applied Geology and Environment laboratories, University of Jordan. XRD analyses were carried out by the Jordanian Natural Resources Authority (NRA). Thanks are given to the students Nancy Refai and Mutaz Al Omari for their help in undertaking the laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi Shaqour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaqour, F., White, S. & Webb, J. Geotechnical characterization of geomaterial blends with zeolitic tuffs for use as landfill liners. Bull Eng Geol Environ 70, 691–697 (2011). https://doi.org/10.1007/s10064-011-0375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0375-6

Keywords

Mots clés

Navigation