Skip to main content
Log in

Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, mid Norway

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Mapping of quick clay is important for hazard zonation, planning and protection purposes. The present study focuses on an area prone to quick clay landslides in mid Norway, which is investigated through a combination of geophysical and geotechnical methods. The following classes are suggested for a first-order interpretation of resistivity profiles in areas with few or no previous investigations: Unleached clay deposits: 1–10 Ωm; Leached clay deposits, possibly quick: 10–100 Ωm; Dry crust clay deposits and coarse sediments: >100 Ωm. In the study area, 14–80 Ωm was found as the main resistivity interval for quick clay. The resistivity values from the present study are compared to previously published values. Classification of material from resistivity values is influenced by local conditions, and there is an overlap between the classes. Resistivity profiles can give valuable information for hazard zonation and may assist in maximising subsequent intrusive investigations.

Résumé

La cartographie des argiles sensibles est importante pour des objectifs de zonage d’aléa, de planification et de protection. L’étude présentée se focalise sur une région sujette aux glissements dans des argiles sensibles du centre de la Norvège. Elle a mis en œuvre une combinaison de méthodes géophysiques et géotechniques. Les classes suivantes sont suggérées pour une première interprétation en termes de profils de résistivité dans des régions peu ou pas étudiées jusqu’alors : Dépôts d’argiles non lessivées : 1–10 Ωm; Dépôts d’argiles lessivées, pouvant être sensibles : 10–100 Ωm; Dépôts d’argiles superficielles sèches : >100 Ωm . Dans la région d’étude, des plages de valeurs de 14 à 80 Ωm caractérisent le mieux des argiles sensibles. Les valeurs de résistivité de cette étude sont comparées à des valeurs précédemment publiées. Le classement des matériaux à partir des valeurs de résistivité est influencé par des conditions locales et il y a un chevauchement entre les classes. Les profils de résistivité peuvent donner une information valable pour un zonage d’aléa et peuvent permettre d’optimiser des investigations ultérieures par méthodes intrusives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aasland R (2010) Kartlegging av kvikkleire med 2D resistivitet og RCPT i Rissa. Master Thesis at Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU) (in Norwegian)

  • ABEM (1999) ABEM Terrameter SAS 4000/SAS 1000. Instruction Manual. ABEM Printed Matter 93101. ABEM, Sweden

  • Berger B (1980) Rapport om vertikale elektriske sonderinger i Verdal. Norwegian Institute of Technology, Trondheim (in Norwegian)

  • Bjerrum L (1954) Geotechnical properties of Norwegian marine clays. Géotechnique 4:49–69

    Article  Google Scholar 

  • Calvert HT, Hyde CSB (2002) Assessing landslide hazard in the Ottawa Valley using electrical and electromagnetic methods. In: Symposium on the application of geophysics to environmental and engineering problems (SAGEEP). Environmental and Engineering Geophysical Society. Wheat Ridge, CO, United States

  • Carson MA, Geertsema M (2002) Mapping in the interpretation and risk assessment of flowslides. In: Bobrowsky PT (ed) Geoenvironmental mapping: methods, theory and practice. AA Balkema, Lisse, Netherlands, pp 667–696

  • Dahlin T (1993) On the automation of 2D resistivity surveying for engineering and environmental applications. Dr. thesis. Lund University, Sweden

  • Dahlin T, Zhou B (2006) Multiple-gradient array measurements for multi-channel 2D resistivity imaging. Near Surf Geophys 4:113–123

    Google Scholar 

  • Dahlin T, Larsson R, Leroux V, Svensson M, Wisén R (2001) Geofysik i släntstabilitetsutredningar. Statens geotekniska institut, Report 62 (in Swedish)

  • Dahlin T, Leroux V, Larsson R, Rankka K (2005) Resistivity imaging for mapping of quick clays for landslide risk assessment. In: Proceedings of 11th Annual Meeting EAGE-Environmental and Engineering Geophysics, Palermo, Italy, 4–7 September, 2005, A046

  • Dalsegg E (2008) Geofysiske målinger for løsmassekartlegging ved Rødde i Melhus kommune, Sør-Trøndelag. NGU Report 2008.084 (in Norwegian)

  • Donohue S, Long M, O’Connor P, Helle TE, Pfaffhuber A, Rømoen M (2009) Geophysical mapping of quick clay—a case study from Smørgrav, Norway. In: Proceedings of Near Surface 2009, Dublin, Ireland, Expanded Abstracts C17

  • Eggen A, Gregersen O (2004) Program for økt sikkerhet mot leirskred. Evaluering av risiko for kvikkleireskred—Melhus kommune. NGI Report 20001008-7 (in Norwegian)

  • Fukue M, Minato T, Horibe H, Taya N (1999) The micro-structures of clay given by resistivity measurements. Eng Geol 54:43–53

    Article  Google Scholar 

  • Geotech (2010) CPT Electric Conductivity Adapter. Datasheet. www.geotech.se [cited November 2010]

  • Glade T, Anderson M, Crozier MJ (eds) (2005) Landslide hazard and risk. Wiley, England

    Google Scholar 

  • Gregersen O (2002) Vurdering av risiko for skred. Metode for klassifisering av faresoner, kvikkleire. NGI Report 20001008-2 (in Norwegian)

  • Gregersen O, Løken T (1983) Mapping of quick clay landslide hazard in Norway. Criteria and experiences. SGI Rep 17:61–174

    Google Scholar 

  • Gregersen O, Løken T (1988) Faresonekartlegging kvikkleireskred. Kartblad Trondheim, M 1:50 000. NGI Report 84050-1 (in Norwegian)

  • Grønlie A (1953) Leinstrand i den aller eldste tida. Johan Christiansens boktrykkeri, Trondheim, 30 p (in Norwegian)

  • Hilmo BO (1989) Marine sensitive leirers mineralsammensetning, kolloidkjemi og mekaniske egenskaper. Dr. Thesis at Department of Geology and Mineral Resources Engineering, Norwegian University of Science and Technology (NTNU) (in Norwegian)

  • Hyde CSB, Hunter JA (1998) Formation electrical conductivity—porewater salinity relationships in Quaternary sediments from two Canadian sites. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, March 22-26, 1998, Chicago, IL. Environmental and Engineering Geophysics Society, pp 499–510

  • ISSMGE TC32 Technical Committee on Risk Assessment and Management (2004) Glossary of risk assessment terms. Version 1, July 2004

  • Janbu N, Nestvold J, Røe Ø, Sveian H (1993) Leirras—årsaksforhold og rasutvikling. In: Walberg Ø (ed) Verdalsboka, Ras i Verdal, vol. B. Verdal kommune, pp 739–784 (in Norwegian)

  • Karlsrud K, Aas G, Gregersen O (1985) Can we predict landslide hazards in soft sensitive clays? Summary of Norwegian practice and experience. NGI Publication 158

  • Lebuis J, Robert J-M, Rissmann P (1983) Regional mapping of landslide hazard in Quebec. Symposium on slopes on soft clays. SGI Rep 17:205–262

    Google Scholar 

  • Leroux V, Dahlin T (2003) Resistivity mapping of quick clay. Field study at Skepplanda, Utby and Munkedal in Bohuslän, Sweden. Lund University, Engineering Geology, 22 pp

  • Loke MH (2007) Res2DInv ver. 3.56. Geoelectrical Imaging 2D and 3D. Instruction Manual. Geotomo Software

  • Lundström K, Andersson M (2008) Hazard mapping of landslides, a comparison of three different overview mapping methods in fine-grained soils. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, 594 pp

  • Lundström K, Larsson R, Dahlin T (2009) Mapping of quick clay formations using geotechnical and geophysical methods. Landslides 6:1–15

    Article  Google Scholar 

  • Norges vassdrags-og energidirektorat (NVE) (2009) Planlegging og utbygging i fareområder langs vassdrag. Retningslinjer 1-2008. Vedlegg: Vurdering av områdestabilitet ved utbygging på kvikkleire og andre jordarter med sprøbruddegenskaper. Revision March 5 2009 (in Norwegian)

  • Norsk Geoteknisk Forening (NGF) (1975) Retningslinjer for presentasjon av geotekniske undersøkelser (in Norwegian)

  • Ottesen HB (2009) CPTU med resistivitetsmåling. Master Thesis at Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU) (in Norwegian)

  • Quinn PE (2009) Large landslides in sensitive clay in eastern Canada and the associated hazard and risk to linear infrastructure. PhD Thesis at Department of Geological Sciences and Geological Engineering, Queens University, Canada

  • Railroad operation report (1867) Trondhejm-Støren Jernbanens 3. driftsberetning Aa 1867 (in Norwegian)

  • Reiser F, Dahlin T, Rønning JS, Solberg IL (2010) Resistivity modelling for clay layer characterisation, possibilities and limitations. NGU Report 2010.047

  • Reite AJ (1983) Trondheim. Beskrivelse til kvartærgeologisk kart 1621 IV—M 1:50 000. NGU Skrifter 391, 44 pp (in Norwegian)

  • Reite AJ, Selnes H, Sveian H (1982) A proposed deglaciation chronology for the Trondheimsfjord area, Central Norway. Geol Surv Norway 373:75–84

    Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, England

    Google Scholar 

  • Robitaille D, Demers D, Potvin J, Pellering F (2002) Mapping of landslide prone areas in the Saguenay region, Quebec, Canada. In: Proceedings of the international conference on instability—planning and management, Ventnor, Isle of Wight, Royaume Uni

  • Rømoen M, Pfaffhuber AA, Karlsrud K, Helle TE (2010) Resistivity on marine sediments retrieved from RCPTU-soundings: a Norwegian case study. In: Proceedings of 2nd International Symposium on cone penetration testing, 9–11 May 2010, Huntington Beach, CA, USA

  • Sandven R (2002) Geoteknikk, materialegenskaper. Utstyr, prosedyrer og parameterbestemmelser. Compendium in the course SIG 2020. Department of geotechnical engineering, Norwegian University of Science and Technology, Trondheim, Norway (in Norwegian)

  • Schälin D, Tornborg J (2009) Evaluation of CPT-R and resistivity measurements in quick clay area. Master of Science Thesis at Department of Civil and Environmental Engineering, Chalmers University of Technology

  • Söderblom R (1969) Salt in Swedish clays and its importance for quick clay formation. Results from some field and laboratory studies. SGI Proceedings 22

  • Solberg IL, Rønning JS, Dalsegg E, Hansen L, Rokoengen K, Sandven R (2008) Resistivity measurements as a tool for outlining quick clay extents and valley fill stratigraphy: feasability study from Buvika, Central Norway. Can Geotech J 45:210–225

    Article  Google Scholar 

  • Solberg IL, Aasland R, Dalsegg E, Hansen L, L’Heureux JS, Rønning JS (2010) Kvikkleireproblematikk i Rissa—bruk av resistivitetsmålinger. In: Proceedings of Fjellsprengningsdagen, Bergmekanikk-og Geoteknikkdagen, 25–26 November 2010, Oslo, Norway, 37 pp (in Norwegian)

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Tønnesen JF (2010) Refraksjonsseismiske målinger for løsmassekartlegging ved Rødde i Melhus kommune. NGU Report 2010.034 (in Norwegian)

  • Viberg L (1984) Landslide risk mapping in soft clays in Scandinavia and Canada. In: Proceedings of IV International symposium on landslides, 16–21 September 1984, Toronto, pp 325–348

  • Vik A, Havnegjerde CR (2010) Kvikkleirekartlegging—Melhus og Trondheim. Grunnundersøkelser—datarapport. Multiconsult Report 413809-1 (in Norwegian)

  • Wangen PA, Sand K (2007) Rødde Gård—Geoteknisk vurdering av nybygg. Sweco Grøner Notat 571701-1 (in Norwegian)

  • Wolff FC (1976) Geologisk kart over Norge, berggrunnskart Trondheim M 1:250 000. NGU (in Norwegian)

  • www.skrednett.no [cited November 2010]

Download references

Acknowledgments

The authors thank the Norwegian Water Resources and Energy Directorate (NVE), the Norwegian National Rail Administration, the Norwegian Public Roads Administration and the Administrative Board of the Norwegian Natural Perils Pool for financial support in the project. Thanks are also given to the Norwegian University of Science and Technology (NTNU) for geotechnical sampling and drilling including RCPTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inger-Lise Solberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solberg, IL., Hansen, L., Rønning, J.S. et al. Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, mid Norway. Bull Eng Geol Environ 71, 119–133 (2012). https://doi.org/10.1007/s10064-011-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0363-x

Keywords

Mots clés

Navigation