Skip to main content
Log in

Geophysical exploration for a long deep tunnel to divert water from the Yangtze to the Yellow River, China

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

To identify problematic geological structures which would be encountered when driving tunnels in the high mountainous area of South West China, a joint geophysical and engineering geological study was made. The tunnels will form part of a project to divert water from the Yangtze to the Yellow Rivers. A controlled source audio-frequency magnetotelluric method (CSAMT) was carried out in 2004 between the Ma-ke and Jia-qu rivers in high, steep terrain. The paper discusses the method of data collection, processing, and analysis for the West route. The faults/fractures identified will need to be taken into account in the design and construction of the tunnel.

Résumé

Afin d’identifier des structures géologiques contraignantes qui pourraient être rencontrées lors du creusement de tunnels au travers des régions montagneuses de la Chine du sud-ouest, une étude couplée de géophysique et de géologie de l’ingénieur a été réalisée. Les tunnels feront partie du projet de détournement des eaux du bassin du Yangtze vers celui du Fleuve Jaune. Une méthode magnéto-tellurique (CSAMT) a été mise en œuvre en 2004 entre les rivières de Ma-ke et Jia-qu dans une région d’altitude présentant des pentes raides. L’article discute des méthodes de récupération, traitement et analyse des données pour l’itinéraire de l’Ouest. Les failles et fractures identifiées devront être prises en compte dans la conception et la construction du tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Basokur AT, Rasmussen TM, Kaya C (1997) Comparison of induced-polarisation and controlled-source audio-magnctotellurics methods for massive chalcopyrite exploration in a volcanic area. Geophysics 62(6):1087–1096

    Article  Google Scholar 

  • Batrel LC, Jacobson RD (1987) Results of a controlled-source audiofrequency magnetotelluric survey at the Puhimau thermal area, Kilauea Volcano, Hawaii. Geophysics 52(4):665–677

    Google Scholar 

  • Boerner DE, Wright JA, Thurlow JG (1993) Tensor CSAMT studies at the Buchans Mine in central Newfoundland. Geophysics 58(1):12–19

    Article  Google Scholar 

  • Bostick FX (1986) Electromagnetic array profiling (EMAP).In: Proceedings of (56th) SEM Annual Meeting Expanded Technical program, Abstract with biographies, pp 60–61

  • David EB, Ron DK, Alan GJ (1993) Orthogonality in CSAMT and MT measurements. Geophysics 58(7):924–934

    Article  Google Scholar 

  • Di QY, Wang MY, Shi KF, Zhang GL (2002a) CSAMT research survey for preventing water-bursting disaster in mining. In: Proceedings of the 106th SEGJ Conference, The Society of Exploration Geophysicists of Japan, Tokyo, pp 43–49

  • Di QY, Wang MY, Shi KF, Zhang GL (2002b) An applied study on prevention of water bursting disaster in mines with the high resolution V6 system. Chinese J Geophys 45(5):744–748 (in Chinese)

    Google Scholar 

  • Goldstein MA (1971) Magnetotelluric experiments employing an artificial dipole source (D), University of Toronto

  • Goldstein MA, Strangway DW (1975) Audio frequency magnetotelluric with a grounded dipole source. Geophysics 40(4):669–683

    Article  Google Scholar 

  • Jimmy S, Gokarn SG, Manoj C, Singh SB (2003) Effects of galvanic distortions on magnetotelluric data: Interpretation and its correction using deep electrical data. Earth Planet Sci 112(1):27–36

    Google Scholar 

  • Jiracek GR (1990) Near surface and topographic distortions in topographic induction. Surv Geophys 11(1):163–203

    Article  Google Scholar 

  • Lu X, Unsworth M, Booker J (1999) Rapid relaxation inversion of CSAMT data. Geophys J Int 138(1):381–392

    Article  Google Scholar 

  • Macinner SC (1987) Lateral effects in controlled source audiomagnetotellurics. Ph. D. thesis, University of Arizona, Tucson

  • Routh PS, Oldenburg, DW (1996) Inversion of controlled-source audio-frequency magnetotelluric data for a horizontally layered earth. In: Proceedings 66th Annual International Meeting, The Soceity of Exploration Geophysicsts, Expanded Abstracts, pp 257–260

  • Sandberg SK, Hohmann GW (1982) Controlled-source audio-magnetotellurics in geothermal exploration. Geophysics 47(1):100–116

    Article  Google Scholar 

  • Sasaki Y, Yoshihiro Y, Matsuo K (1992) Resistivity imaging of controlled-source audio frequency magnetotelluric data. Geophysics 57(3):952–955

    Article  Google Scholar 

  • Takeshhi K (1953) The topographic effect in resistivity prospecting. Geophys Explor (Butsuri-Tansa) 6(1):51–54

  • Wannamaker PE (1997) Tensor CSAMT survey over the sulphur springs thermal area, Valles Caldera, New Mexico, USA, Part I: implications for structure of the western equations. Geophysics 62(4):451–465

    Article  Google Scholar 

  • Wu LP, Shi KF (1996) Applied study of CSAMT method on ground water exploration. Chinese J Geophys 39(5):712–717 (in Chinese)

    Google Scholar 

  • Xu SZ, Zhao SK (1985) Tomographic effect in MT exploration. Seismol J Northwest 7(4):422–427 (in Chinese)

    Google Scholar 

  • Yamashita M, Hallof PG, Pelton WH (1985) CSAMT case histories with a multi-channel CSAMT system and discussion of near-field data correction. In: Proceedings 55th SEG Annual Convention, Calgary, Canada: [s. n.], pp 276–278

  • Zonge KL, Hughes LJ (1991) Controlled source audio-frequency magnetotellurics. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Soc Expl Geophys Tulsa 2(B):713–809

  • Zonge KL, Ostrander AG, Emer DF (1986) Controlled-source audio-frequency magnetotelluric measurements, In: Vozoff K (ed) Magnetotelluric methods: Society of Exploration Geophysicsts, Tulsa, USA, Geophysics (Series 5) pp 749–763

Download references

Acknowledgments

The authors thank the financial support for this work from the project 2002CB412702 and KZCX3-SW-134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, Z., Di, Q., Wu, F. et al. Geophysical exploration for a long deep tunnel to divert water from the Yangtze to the Yellow River, China. Bull Eng Geol Environ 71, 195–200 (2012). https://doi.org/10.1007/s10064-011-0358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-011-0358-7

Keywords

Mots clés

Navigation