Skip to main content
Log in

The Sumela Monastery slope in Maçka, Trabzon, Northeast Turkey: rock mass properties and stability assessment

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In 2001, rock falls occurred on the southern slope of the Sumela Monastery, which was built on a cliff in Trabzon, north east Turkey, and is visited by many tourists. Considering the steepness of the slope and difficulty of access, rock classifications were made based on seismic wave velocity, rock mass quality (Q), rock quality designation (RQD) and rock mass rating (RMR). The results indicated extremely poor to very poor rock in the cracked, fractured and weathered parts and poor to fair rock in the intact parts of the monastery slope. As a consequence, rock fall, slide and rolling may occur from time to time. These constitute a hazard to the facilities of the monastery and access paths. It is recommended that cracked areas are strengthened with cement-based materials, that accumulated rocks are removed, and that retaining walls are constructed on solid rock around the unstable rock blocks.

Résumé

En 2011, des chutes de blocs ont eu lieu sur la pente sud du Monastère de Sumela, construit en bord de falaise à Trabzon, au nord-est de la Turquie, et visité par de nombreux touristes. Considérant la raideur des pentes et les difficultés d’accès, des classifications des roches ont été réalisées à partir de données issues de mesures de vitesse du son et des indices Q, RQD et RMR. Les résultats conduisent à identifier des roches de résistance extrêmement faible à très faible dans les zones fissurées, fracturées et altérées et des roches de résistance faible à moyenne dans les zones intactes. En conséquence, des chutes de blocs, des glissements et des éboulements peuvent avoir lieu de temps en temps. Ceci représente un aléa pour les installations et les chemins d’accès au monastère. Il est recommandé que les zones fissurées soient renforcées par des matériaux à base de ciment, que les roches éboulées soient enlevées et que des murs de soutènement soient construits sur une base solide pour retenir les blocs instables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Attewell PB, Farmer IW (1976) Principles of engineering geology. Chapman & Hall, London, p 1045

    Google Scholar 

  • Barton N (1991) Geotechnical design. World Tunn 4:410–416

    Google Scholar 

  • Barton N (2002) Some new Q-value correlations to assist in site characterization and tunnel design. Rock Mech Min Sci 39:185–216

    Article  Google Scholar 

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor & Francis Group, London, p 727

    Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the tunnel support. Rock Mech 6:189–236

    Article  Google Scholar 

  • Bektaş O, Şen C, Atıcı Y, Köprübaşı N (1999) Migration of the upper Cretaceous subduction-related volcanism towards the back-arc basin of the Eastern Pontide magmatic-arc (NE Turkey). Geol J 34:95–106

    Article  Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Trans S Afr Inst Civ Eng 15:335–344

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York, p 238

    Google Scholar 

  • Chang X, Yike L, Wang H, Gao X (2000) Rock mass structure analysis based on seismic velocity and attenuation images. Chin Sci Bull 45:1211–1216

    Article  Google Scholar 

  • Chen H, Chen RH, Huang TH (1994) An application of an analytical model to a slope subject to rock falls. Bull Assoc Eng Geol 31:447–458

    Google Scholar 

  • Deere DU (1964) Technical description of rock cores for engineering purposes. Rock Mech Rock Eng 1:17–22

    Google Scholar 

  • Deere DU, Hendron AJ Jr, Patton FD, Cording EJ (1967) Design of surface and near surface construction in rock. In: Fairhurst C (ed) Proceedings of the eighth symposium on rock mechanics. American Institute of Mining, Metallurgical and Petroleum Engineers, pp 237–302

  • del Petro R, Hürlimann M (2008) Geotechnical classification and characterization of materials for stability analyses of large volcanic slopes. Eng Geol 98:1–17

    Article  Google Scholar 

  • Dorren LKA (2003) A review of rock fall mechanics and modeling approaches. Progr Phys Geogr 27:69–87

    Article  Google Scholar 

  • Gedikoğlu A, Pelin S, Özsayar T (1979) The main lines of geotectonic development of the East Pontid in the Mesozoic era. In: Proceeding of the 1st geological congress of the Middle East (GEOCOME), pp 555–580

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Article  Google Scholar 

  • Havuş M (2004) The Frescoes of Sumela. Ajans Türk Basın ve Basım A.Ş, Ankara, p 77

    Google Scholar 

  • ISRM (1978) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16:135–140

    Google Scholar 

  • Jennings JE (1970) A mathematical theory for the calculation of the stability of slopes in open cast mines. In: Proceedings of the symposium on planning open pit mines, Cape Town, Balkema, pp 87–102

  • Ketin İ (1966) Anadolu’nun tektonik birliktelikleri. Maden Tetkik ve Arama Dergisi 66:23–34

    Google Scholar 

  • Klose CD, Loew S, Giese R, Borm G (2007) Spatial predictions of geological rock mass properties based on in situ interpretations of multi-dimensional seismic data. Eng Geol 93:99–116

    Article  Google Scholar 

  • Marzorati S, Luzi L, Amicis MD (2002) Rock falls induced by earthquakes: a statistical approach. Soil Dyn Earthq Eng 22:565–577

    Article  Google Scholar 

  • Okay AI, Şahintürk O (1997) Geology of the Eastern Pontides, regional and petroleum geology of the Black Sea and surrounding region. Am Assoc Petrol Geol Mem 68:291–311

    Google Scholar 

  • Okubo HC (2004) Rock mass strength and slope stability of the Hilina Slump, Kilaula volcano, Hawai’i. J Volcanol Geotherm Res 138:43–76

    Article  Google Scholar 

  • Piteau DR (1970) Geological factors significant to the stability of slopes cut in rock. In: Proceedings of the symposium on planning open pit mines, Cape Town, Balkema, pp 33–53

  • Priest SD, Hudson JA (1976) Discontinuity spacing in rock. Int J Rock Mech Min Sci Geomech 13:135–148

    Google Scholar 

  • Pullammanappallil SK, Louie JN (1994) A generalized simulated-annealing optimization for inversion of first-arrival times. Bull Seismol Soc Am 84:1397–1409

    Google Scholar 

  • Romana MR (1993) A geomechanical classification for slopes: slope mass rating. Compr Rock Eng 3:575–599

    Google Scholar 

  • Sopacı E, Akgün H (2008) Engineering geological investigations and the preliminary support design for the proposed Ordu peripheral highway tunnel, Ordu, Turkey. Eng Geol 96:43–61

    Article  Google Scholar 

  • Topal T, Akin M, Ozden UA (2007) Assessment of rock fall hazard around Afyon Castle, Turkey. Env Geol 53:191–200

    Article  Google Scholar 

  • Wasowski J, Gaudio VD (2000) Evaluating seismically induced mass movement hazard in Caramanico Terme (Italy). Eng Geol 58:291–311

    Article  Google Scholar 

  • Wyllie DC, Mah CW (1999) Rock slope engineering. Spon Press, New York, p 437

    Google Scholar 

Download references

Acknowledgments

We are indebted to the Karadeniz Technical University Research Fund (No. 2002.112.007.1) and would like to address our thanks to Melek Demir for the translation parts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan Gelişli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelişli, K., Şeren, A., Babacan, A.E. et al. The Sumela Monastery slope in Maçka, Trabzon, Northeast Turkey: rock mass properties and stability assessment. Bull Eng Geol Environ 70, 577–583 (2011). https://doi.org/10.1007/s10064-010-0343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0343-6

Keywords

Mots clés

Navigation