Skip to main content

Advertisement

Log in

Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Landslide susceptibility is analysed in a semi-arid mountain environment, on the southern slope of Sierra Nevada. In a study area of 460 km2, 252 landslides were inventoried, affecting 3.2% of the total surface area. These landslides were mainly slides and flows on phyllite, schist and marble units in the Inner Zone of the Betic Cordillera. The most relevant determining factors proved to be elevation, slope angle, slope aspect and lithology. Triggering factors include mainly short-term landslide generation during heavy rainfall, as well as sporadic earthquakes or long-term activation by land-use changes, river over-excavation, etc. Although landslide susceptibility, assessed by the GIS matrix method, is predominantly low, some 15% of the study area shows moderate to very high susceptibility, coinciding with the sites of public works in the region. The map drawn was validated by the degree-of-fit method, registering values above 83.2% for the zones of high and very high susceptibility.

Résumé

La sensibilité aux glissements est analysée dans un environnement montagneux semi-aride, sur les versants sud de la Sierra Nevada. Sur un secteur d’étude de 460 km2, 252 glissements de terrain ont été répertoriés, affectant 3,2% de la surface totale du secteur étudié. Ces glissements de terrain étaient principalement des glissements et des coulées au sein d’unités de phyllites, de schistes et de marbres dans la zone interne de la cordillère bétique. Les facteurs de prédisposition les plus significatifs étaient l’altitude, la pente topographique, la morphologie des pentes et la lithologie. Les facteurs de déclenchement comportaient, pour la génération à court terme de glissements, les fortes pluies ainsi que des séismes sporadiques et, pour les générations sur le long terme, les modifications dans l’usage du sol, le surcreusement des rivières, etc. Bien que la sensibilité aux glissements, évaluée par une méthode matricielle basée sur un système SIG, soit principalement faible, environ 15% du secteur d’étude présente une sensibilité modérée à très forte, coïncidant avec les zones de travaux publics dans la région. La carte dessinée a été validée par une méthode de degré d’ajustement, enregistrant des valeurs supérieures à 83,2% pour les zones de forte à très forte sensibilité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcántara-Ayala I (1999a) Modelling deep-seated slope failures in semi-arid southern Spain. Geofís Int 38(1):49–59

    Google Scholar 

  • Alcántara-Ayala I (1999b) The Torvizcón, Spain, landslide of February 1996: the role of lithology in a semi-arid climate. Geofís Int 38(3):175–184

    Google Scholar 

  • Alcántara-Ayala I (2000) Índice de susceptibilidad a movimientos del terreno y su aplicación en una región semiárida. Rev Mex Cienc Geol 17(1):66–75

    Google Scholar 

  • Aldaya F, Martínez-García D, Díaz de Federico A, Puga E, García-Dueñas V, Navarro-Vilá F (1979) Mapa Geológico de España 1:50.000, hoja nº 1042. IGME

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • Arango JR, Blázquez R, Chacón J, López C (1995) Soil liquefaction potential induced by the Andalusian earthquake of 25 December 1884. Nat Hazards 12(1):1–17. doi:10.1007/BF00605278

    Article  Google Scholar 

  • ArcGIS (2004) ESRI® ArcMapTM 9.0 License Type: ArcInfo. ESRI Inc

  • Ayala FJ, Elizaga E, González de Vallejo LI (1987) Impacto económico y social de los riesgos geológicos en España. IGME, Madrid, p 134

    Google Scholar 

  • Balanyá JC, García-Dueñas V (1987) Les directions structurales dans le Domaine d’Alborán de part et d’autre du Détroit de Gibraltar. Comptes Rendus de l’Académie des Sciences de Paris. Serie II 304(15):929–932

    Google Scholar 

  • Botzan TM, Mariño MA, Necula AI (1998) Modified de Martonne aridity index: application to the Napa Basin, California. Phys Geogr 19(1):55–70

    Google Scholar 

  • Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo Country, California. U.S. Geological Survey, Field Studies Map MF-360, scale 1:62500

  • Burrough P (1988) Principles of geographical information systems for land resources assessment. Oxford University Press, London, p 194

    Google Scholar 

  • Canuti P, Casagli N (1996) Considerazioni sulla valutazione del rischio dei frana. Estratto da “Fenomeni Franosi e Centri Abitati”. Atti del Convegno di Bologna del 27 Maggio 1994. CNR-GNDCI-Linea 2 “Previsione e Prevenzione di Eventi Granosi a Grande Rischio”. Pubblicazione no. 846

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16(5):427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Castillo A, Martín-Rosales W, Osorio R (1996) Erosión hídrica en la cuenca del río Guadalfeo (Granada); estudio comparativo de las metodologías de la U.S.L.E y Fournier. Geogaceta 19:142–145

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1993) Methodology for large scale landslide hazard mapping in a G.I.S. In: Seventh international conference and field workshop on landslides, vol 1. Bratislava, Eslovaquia, pp 77–82

  • Chacón J, Irigaray C, Fernández T (1994) Large to middle scale landslides inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS. In: Seventh IAEG international congress, vol 1. Balkema, Rotterdam, pp 4669–4678

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2003) Susceptibilidad a los movimientos de ladera en el sector central de la Cordillera Bética. In: Ayala FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG. Fundamentos y Aplicaciones en España. IGME, Madrid, pp 83–96

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems (GIS). Bull Eng Geol Environ 65(4):341–411. doi:10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chung CF, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazards zonation. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Kluwer Academic Publishers, Dordrecht, pp 107–134

    Google Scholar 

  • Concha-Dimas A, Campos-Vargas M, López-Miguel C (2007) Comparing heuristic and bivaritate GIS-based methods for refining landslide susceptibility maps and northern Mexico City. Environ Eng Geosci 13(4):277–287. doi:10.2113/gseegeosci.13.4.277

    Article  Google Scholar 

  • Cross M (1998) Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study. In: Maund JG, Eddlestonb M (eds) Geohazards in engineering geology. The Geological Society, vol 15. Engineering Geology Special Publications, London, UK, pp 247–261

    Google Scholar 

  • Crozier MJ (1984) Field assessment of slope instability. In: Brundsden D, Prior DH (eds) Slope instability. Wiley, New York, pp 103–142

    Google Scholar 

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm Publishers, Surrey Hills, London, p 272

    Google Scholar 

  • De Martonne E (1942) Nouvelle carte mondiale de l’indice d’aridité. Annales de Geographie 288:241–250

    Article  Google Scholar 

  • DeGraff JV, Romesburg HC (1980) Regional landslide-susceptibility assessment for wildland management: a matrix approach. In: Coates DR, Vitek JD (eds) Thresholds in geomorphology, vol 19. Alien & Unwin, Boston, pp 401–414

    Google Scholar 

  • Egeler CG (1964) On the tectonics of the eastern Betic Cordilleras (SE Spain). Int J Earth Sci (Geologische Rundschau) 53(1):260–269. doi:10.1007/BF02040750

    Google Scholar 

  • El Hamdouni R (2001) Estudio de Movimientos de Ladera en la Cuenca del Río Ízbor mediante un SIG: Contribución al Conocimiento de la Relación entre Tectónica Activa e Inestabilidad de Vertientes. Unpublished PhD Thesis, Department of Civil Engineering, University of Granada, Spain, 429 pp

  • El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96(1–2):150–173. doi:10.1016/j.geomorph.2007.08.004

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31(2):261–272. doi:10.1139/t94-031

    Article  Google Scholar 

  • Fernández T (2001) Cartografía, análisis y modelado de la susceptibilidad a los movimientos de ladera en macizos rocosos mediante SIG: Aplicación a diversos sectores del sur de la provincia de Granada. Unpublished PhD Thesis, Department of Civil Engineering, University of Granada, Spain, 648 pp

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa area (Granada, Spain). Nat Hazards 30(3):297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2008) Correlation between natural slope angle and rock mass strength rating in the Betic Cordillera, Granada, Spain. Bull Eng Geol Environ 67(2):153–164. doi:10.1007/s10064-007-0118-x

    Article  Google Scholar 

  • Fernández P, Irigaray C, Jiménez-Perálvarez J, El Hamdouni R, Crosetto M, Monserrat O, Chacón J (2009) First delimitation of areas affected by ground deformations in the Guadalfeo River Valley and Granada metropolitan area (Spain) using the DInSAR technique. Eng Geol 105(1–2):84–101. doi:10.1016/j.enggeo.2008.12.005

    Article  Google Scholar 

  • Glade T, Anderson MG, Crozier MJ (eds) (2005) Landslide risk assessment. Wiley, Chichester, pp 832

  • Gómez-Pugnaire MT, Galindo-Zaldívar J, Rubatto D, González-Lodeiro F, López V, Jabaloy A (2004) A reinterpretation of the Nevado-Filábride and Alpujárride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Miner Petrogr Mitt 84(3):303–322

    Google Scholar 

  • Goodchild MF (1986) Spatial autocorrelation, CATMOG 47. Geo Books, Norwich, pp 56

  • Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2(4):531–555

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1-4):181–216. doi:10.1016/S0169-55X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1-4):272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1-2):166–184. doi:10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Hansen MJ (1984) Landslide hazard analysis. In: Brundsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602

    Google Scholar 

  • Irigaray C (1995) Movimientos de Ladera: Inventario, Análisis y Cartografía de la Susceptibilidad Mediante un Sistema de Información Geográfica. Aplicación a las Zonas de Colmenar (Málaga), Rute (Córdoba) y Montefrío (Granada). Unpublished PhD Thesis, Department of Civil Engineering, University of Granada, Spain, 578 pp

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping. A case study. Earth Surf Proc Land 24(6):537–544. doi:10-1002/(SICI)1096-9837(199906)24:6<537:AID-ESP965>3.0.CO;2-6

    Article  Google Scholar 

  • Irigaray C, Lamas F, El Hamdouni R, Fernández T, Chacón J (2000) The importance of the precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81. doi:10.1023/A:1008126113789

    Article  Google Scholar 

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41(1):61–79. doi:10.1007/s11069-006-9027-8

    Article  Google Scholar 

  • Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Fernández T, Chacón J (2005) Rasgos geomorfológicos y movimientos de ladera en la cuenca alta del río Guadalfeo, sector Cádiar-Órgiva (Granada). In: Alonso E, Corominas J (eds) VI Simposio Nacional sobre Taludes y Laderas Inestables. Valencia, Spain, pp 891–902

    Google Scholar 

  • Jiménez-Perálvarez JD, Irigaray C, El Hamdouni R, Chacón J (2009) Building models for automatic landslide-susceptibility analysis, mapping and validation in ArcGIS. Nat Hazards 50(3):571–590. doi:10.1007/s11069-008-9305-8

    Google Scholar 

  • Junta de Andalucía (2005) Modelo Digital del Terreno de Andalucía. Consejería de Obras Públicas y Transportes, Consejería de Agricultura y Pesca, Consejería de Medio Ambiente. ISBN: 84-96329-34-8

  • Keller EA, Sanz de Galdeano C, Chacón J (1996) Tectonic geomorphology and earthquake hazard of Sierra Nevada, Southern Spain. In: Chacón J, Rosúa JL (eds) 1a Conferencia Internacional Sierra Nevada. Granada, pp 201–218

  • Köppen W (1936) Das geographische system der klimate. In: Köppen W, Geiger R (eds) Handbuch der klimatologie, 1C. Gebrüder borntraeger, Berlin, pp 44

  • Lang R (1915) Versuch einer exakten Klassifikation der Böden in klimatischer und geologischer Hinsicht. Int Mittig. f. Bodenkunde 5:312–346

    Google Scholar 

  • Ortega M, Nieto F, Rodríguez J, López AC (1985) Mineralogía y estratigrafía de los sedimentos neógenos del corredor de la Alpujarra (Cordillera Bética, España). Bol Soc Esp Miner 8:307–318

    Google Scholar 

  • Remondo J, González A, de Díaz Terán JR, Cendrero A, Fabbri A, Cheng CF (2003) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain. Nat Hazards 30(3):437–449. doi:10.1023/B:NHAZ.0000007201.80743.fc

    Article  Google Scholar 

  • Ruiz Sinoga JD, Martinez Murillo JF (2009) Effects of soil surface components on soil hydrological behaviour in a dry Mediterranean environment (Southern Spain). Geomorphology 108(3-4):234–245. doi:10.1016/j.geomorph.2009.01.012

    Article  Google Scholar 

  • Soeters R, Van Westen JC (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. National Academic Press. Washington D.C. Sp-Rep 247, pp 129–177

  • Thornes JB, Alcántara-Ayala I (1998) Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls. Geomorphology 24(1):87–100. doi:10.1016/S0169-555X(97)00103-7

    Article  Google Scholar 

  • UNESCO Working Party On World Landslide Inventory (WP/WLI) (1993) A suggested method for describing the activity of a landslide. Bull Eng Geol Environ 47(1):53–57. doi:10.1007/BF02639593

    Google Scholar 

  • UNESCO–A.I.G.I. (1976) Guide pour la préparation des cartes géotechiques. Paris, Presses Unesco, Sc. De la Terre nº15, 79p

  • Van Bemmelen RW (1927) Bijdrage tot de geologie der Betisch Ketens in de provincie Granada. PhD Thesis, University of Delft, 176 pp

  • Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21(2-3):241–255. doi:10.1023/A:1006794127521

    Article  Google Scholar 

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Int J Earth Sci (Geologische Rundschau) 86(2):404–414. doi:10.1007/s005310050149

    Google Scholar 

  • Varnes DJ (1978) Slope movements types and processes. In: Schuster RL, Kizek RJ (eds) Landslides: analysis and control. National Academy of Sciences, Washington DC, Special report 176(2), pp 11–33

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazards 3. Commission on Landslides of the IAEG, UNESCO, Paris

    Google Scholar 

Download references

Acknowledgments

This research was supported by projects CGL2005-03332 and CGL2008-04854 funded by the Ministry of Science and Education of Spain, and Excellence Project P06-RNM-02125, funded by the Regional Government. Rainfall dates have been supplied by the National Meteorological Institute of Spain. It was developed in the RNM121 Research Group funded by the Andalusian Research Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Jiménez-Perálvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Perálvarez, J.D., Irigaray, C., El Hamdouni, R. et al. Landslide-susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70, 265–277 (2011). https://doi.org/10.1007/s10064-010-0332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0332-9

Keywords

Mots clés

Navigation