Skip to main content
Log in

Geoelectrical imaging in the interpretation of geological conditions affecting quarry operations

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Determination of the subsurface geology is very important for the rock quarry industry. This is primarily done by drilling and mapping. However, in Sweden, the bedrock is often completely covered by Quaternary sediments, making the prediction quite difficult. This study shows that electrical resistivity imaging together with induced polarization proved to be very efficient in detecting fracture frequency, major fracture zones and variations in rock mass quality, all of which can affect the aggregate quality. These techniques can also determine the thickness of the overburden. Furthermore, by doing 2D-parallel data sampling, a 3D inversion of the dataset is possible, which greatly enhances the visualization of the subsurface. Implementation of geophysics can be a valuable tool for the quarry industry, resulting in substantial economic benefits.

Résumé

Les études géologiques de sub-surface sont très importantes pour l’industrie des matériaux de carrière. Ces études sont principalement réalisées par forage et cartographie. Cependant, en Suède, le substratum est souvent complètement recouvert par des dépôts quaternaires, entraînant des prévisions très difficiles. Cette étude montre que les techniques associées d’imagerie de résistivité électrique et de polarisation induite s’avèrent être très efficaces pour la détection de densités de fractures, de zones fortement fracturées et de variations de la qualité du massif rocheux, tous ces éléments pouvant affecter la qualité des granulats. De plus, en réalisant des échantillonnages par des lignes parallèles à deux dimensions, une inversion tridimensionnelle du jeu de données est possible, ce qui améliore grandement la visualisation de la sub-surface. La mise en œuvre des méthodes géophysiques apparaît intéressante pour les industries extractives, avec en perspective des bénéfices économiques substantiels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aaltonen J, Olofsson B (2002) Direct current (DC) resistivity measurements in long-term groundwater monitoring programmes. Environ Geol 42:662–671

    Google Scholar 

  • Arnbom JO, Persson L (2001) Berggrundskarta 11I Uppsala NV, Sveriges Geologiska Undersökning, Af 210

  • Atekwana EA, Sauck WA, Werkema DD Jr (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180

    Article  Google Scholar 

  • Bowling JC, Harry DL, Rodriguez AB, Zheng C (2007) Integrated geophysical and geological investigation of a heterogeneous fluvial aquifer in Columbus Mississippi. J Appl Geophys 62:58–73

    Article  Google Scholar 

  • Bylund G (1973) Paleomagnetic study of Scanian Dolerites and Basalts. Geology Department, Lund University, Lund

  • Dahlin T (1997) Resistivitetsmätning för ingenjörs- och miljötilläpningar. Bygg & Teknik vol 4, pp 48–55

  • Dahlin T (2001) The development of DC resistivity imaging techniques. Comput Geosci 27:1019–1029

    Article  Google Scholar 

  • Dahlin T, Zhou B (2006) Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surf Geophys 4:113–123

    Google Scholar 

  • Dahlin T, Leroux V, Nissen J (2002) Measuring techniques in induced polarisation imaging. J Appl Geophys 50(3):279–298

    Article  Google Scholar 

  • Dahlin T, Wisén R, Zhang D (2007) 3D Effects on 2D resistivity imaging—modelling and field surveying results. 13th European meeting of environmental and engineering geophysics, 3–5 September, Istanbul, Turkey

  • Drahor MG, Göktürkler G, Berge MA, Özgür Kurtulmus T (2006) Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. Environ Geol 50:147–155

    Article  Google Scholar 

  • Gharibi M, Bentley LR (2005) Resolution of 3-D electrical resistivity images from inversions of 2-D orthogonal lines. J Environ Eng Geophys 10:339–349

    Article  Google Scholar 

  • Klingspor I (1976) Radiometric age-determination of basalts, dolerites and related syenite in Skåne, southern Sweden. Geol För Stockh Förh 98:195–216

    Google Scholar 

  • Leroux V, Dahlin T (2003) Site conditions requiring extra precautions for induced polarisation measurements. In: Proceedings of 9th meeting environmental and engineering geophysics, Prague, Czech Republic, 31 August–4 September 2003, O-052, p 4

  • Maia DFS, Castilho GP (2008) Assessing the cost-benefit of multi-core cables and non-polarizable electrodes on shallow time-domain IP surveys. In: Proceedings of SAGEEP 2008

  • Möller H (1992) Beskrivning till jordartskartan Uppsala NV, Sveriges Geologiska Undersökning, Ae 113, p 92

  • Möller H (1993) Jordartskartan 11I Uppsala NV, Sveriges Geologiska Undersökning, Ae 113

  • Möller H, Stålhös G (1971) Beskrivning till jordartskartan Uppsala SV, Sveriges geologiska undersökning, Ae 9, p 69

  • Möller H, Stålhös G (1974) Beskrivning till jordartskartan Uppsala SO, Sveriges Geologiska Undersökning, Ae 10, p 80

  • Müllern C-F (1978) Den prekambriska berggrunden. I Gustafsson, O. Beskrivning till hydrogeologiska kartbladet Trelleborg NO/Malmö SO. SGU Ag 6, pp 8–13

  • Nichols TC Jr, Collins DS (1991) Rebound, relaxation, and uplift. In: Kiersch GA (ed) The heritage of engineering geology; the first hundred years. The Geological Society of America, pp 265–276

  • Palacky GJ (1989) Resistivity characteristics of geologic targets. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicist, pp 53–130

  • Papadopoulos NG, Tsourlos P, Tsokas GN, Sarris A (2007) Efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities. Near Surf Geophys 5(6):349–361

    Google Scholar 

  • Persson L (1988) Beskrivning till berggrundskarta Vetlanda SV, Sveriges Geologiska Undersökning, Af 170

  • Persson L (1989) Berggrundskarta 6F Vetlanda SV, Sveriges Geologiska Undersökning, Af 170

  • Räisänen M, Torppa A (2005) Quality assessment of a geologically heterogeneous rock quarry in Pirkanmaa county, southern Finland. Bull Eng Geol Environ 64:409–418

    Article  Google Scholar 

  • Ringberg B (1979) Jordartskartan 2C Malmö SO, Sveriges Geologiska Undersökning, Ae 38

  • Ringberg B (1980) Beskrivning till Jordartskartan Malmö SO, Sveriges Geologiska Undersökning, Ae 38, p 179

  • Sass O (2007) Bedrock detection and talus thickness assessment in the European Alps using geophysical methods. J Appl Geophys 62:254–269

    Article  Google Scholar 

  • Sivhed U, Erlström M (1998) Berggrundskartan 2C Malmö SO, Sveriges Geologiska Undersökning, Af 194

  • Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge, p 770

    Google Scholar 

  • Wisén R, Linders F, Dahlin T (2006) 2D and 3D resistivity imaging in an investigation of boulder occurrence and soil depth in glacial till. 12th European meeting of environmental and engineering geophysics, 4–6 September, Helsinki, Finland

  • Zhou B, Dahlin T (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surf Geophys 1(3):105–117

    Google Scholar 

  • Zonge K, Wynn J, Urquhart S (2005) Resistivity, induced polarization, and complex resistivity. In: Butler DK (ed) Near-surface geophysics. Society of Exploration Geophysicist, Tulsa, pp 265–300

    Chapter  Google Scholar 

Download references

Acknowledgments

The work behind this paper was funded by The Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (Formas). Thanks to Björn Eliasson at Skanska Sverige AB, Asfalt och Betong Mellansverige; to Magnus Tillman at Hagéns Åkeri and to NCC Roads; and to Björn Linné at Sydsten, for allowing us to use the quarries as test sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimmi K. Magnusson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, M.K., Fernlund, J.M.R. & Dahlin, T. Geoelectrical imaging in the interpretation of geological conditions affecting quarry operations. Bull Eng Geol Environ 69, 465–486 (2010). https://doi.org/10.1007/s10064-010-0286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0286-y

Keywords

Mots clés

Navigation