Skip to main content
Log in

Lineament mapping and its application in landslide hazard assessment: a review

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper presents an overview of the use of lineaments in landslide hazard mapping. The lineaments are normally derived either from aerial photographs or satellite imagery. The relative advantages and disadvantages of digital image processing and manual (visual) lineament interpretation are discussed. Most researchers prefer the manual technique, despite the fact it is more time-consuming and subjective, as it allows a higher degree of operator control. Ways of increasing objectivity in the interpretation are suggested. It is hoped that lineament mapping will increasingly be incorporated in landslide hazard assessment hence the paper emphasizes the need for care and a proper understanding of these methods and their limitations.

Résumé

L’article présente une revue sur l’utilisation des linéaments pour la cartographie de l’aléa de glissement de terrain. Les linéaments sont normalement obtenus à partir de photographies aériennes ou d’images satellitaires. Les avantages et inconvénients des traitements numériques des images et des interprétations manuelles (visuelles) des linéaments sont discutés. La plupart des chercheurs préfèrent les techniques manuelles, malgré le fait qu’elles sont longues et subjectives, considérant qu’elles permettent un meilleur contrôle par l’opérateur. Des moyens d’améliorer l’objectivité dans l’interprétation sont suggérés. On peut espérer que la cartographie de linéaments sera incorporée de façon plus importante dans l’évaluation des aléas de glissement de terrain. C’est pourquoi l’article met l’accent sur la nécessité de bien maîtriser ces méthodes et connaître leurs limites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akman AÜ, Tüfekçi K (2004) Determination and characterization of fault systems and geomorphological features by RS and GIS techniques in the WSW part of Turkey. In: Proceeding of the XXth ISPRS Congress, Istanbul, Turkey. http://www.isprs.org/istanbul2004/comm7/papers/205.pdf

  • Alcantara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Ali SA, Pirasteh S (2004) Geological applications of landsat enhanced thematic mapper (ETM) data and geographic information system (GIS): mapping and structural interpretation in south-west Iran, Zagros Structural Belt. Int J Remote Sens 25(21):4715–4727

    Article  Google Scholar 

  • Ambrosi, Crosta GB (2006) Large sackung along major tectonic features in the Central Italian Alps, Large Landslides: dating, triggering, modelling, and hazard assessment. Eng Geol 83(1):183–200

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

    Article  Google Scholar 

  • Anbalagan R, Singh B (1996) Landslide hazard and risk assessment mapping of mountainous terrains. A case study from Kumaun Himalaya, India. Eng Geol 43:237–246

    Article  Google Scholar 

  • Andreas M, Allan A (2007) Incorporating geology and geomorphology in land management decisions in developing countries: a case study in Southern Costa Rica. Geomorphology 87:68–89

    Article  Google Scholar 

  • Argialas P, Mavrantza OD (2004) Comparison of edge detection and Hough transform techniques for the extraction of geologic features. In: Proceedings of the geo-imagery bridging continents XXth ISPRS Congress, Istanbul, Turkey. http://www.isprs.org/istanbul2004/comm3/papers/376.pdf

  • Arlegui LE, Soriano MA (1998) Characterising lineaments from satellite images and field studies in the central Ebro basin (NE Spain). Int J Remote Sens 19(16):3169–3185

    Article  Google Scholar 

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385

    Article  Google Scholar 

  • Avery TE, Berlin GL (1985) Interpretation of aerial photographs. Burgess Publishing Company, Minneapolis

    Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Prefecture, Japan. Landslides 1:73–81

    Article  Google Scholar 

  • Barredo JI, Benavidesz A, Herhl J, van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf 2:9–23

    Article  Google Scholar 

  • Bense V (1998) Morphotectonic and hydrogeomorphic control on the hydrogeology of the Buffelsrivier catchment. A hydrogeologic case study on the Great Escarpment in Namaqualand, South Africa. MSc thesis, Vrije Universiteit, Amsterdam

  • Budetta P, Santo A, Vivenzio F (2008) Landslide hazard mapping along the coastline of the Cilento region (Italy) by means of a GIS-based parameter rating approach. Geomorphology 94:340–352

    Article  Google Scholar 

  • Campbell JB (1987) Introduction to remote sensing. The Guilford Press, New York

    Google Scholar 

  • Can T, Nefeslioglu HA, Gokceoglu C, Sonmez H, Duman TY (2005) Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology 72:250–271

    Article  Google Scholar 

  • Cengiz O, Sener E, Yagmurlu F (2006) A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs, Isparta, SW Turkey. J Asian Earth Sci 27:155–163

    Article  Google Scholar 

  • Chàcon J, Irigaray C, Fernàndez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Coelho-Netto AL, Avelar AS, Fernandes MC, Lacerda WA (2007) Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: the role of morphometric subdivision of the terrain. Geomorphology 87:120–131

    Article  Google Scholar 

  • Concha-Dimasa A, Cerca M, Rodrıgueza SR, Watters RJ (2005) Geomorphological evidence of the influence of pre-volcanic basement structure on emplacement and deformation of volcanic edifices at the Cofre de Perote–Pico de Orizaba chain and implications for avalanche generation. Geomorphology 72:9–39

    Google Scholar 

  • Conoscenti C, Di Maggio C, Rotigliano E (2008) GIS-analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology 94:325–339

    Article  Google Scholar 

  • Cooke RU, Doornkamp JC (1990) Geomorphology in environmental management: a new introduction, 2nd edn. Clarendon Press, Oxford, 410 pp

  • Cortes AL, Maestro A, Soriano MA, Casas AM (1998) Lineaments and fracturing in the Neogene rocks of the Almaza′n Basin, northern Spain. Geol Mag 135:255–268

    Article  Google Scholar 

  • Cortes AL, Soriano MA, Maestro A, Casas AM (2003) The role of tectonic inheritance in the development of recent fracture systems, Duero Basin, Spain. Int J Remote Sens 24(22):4325–4345

    Article  Google Scholar 

  • Costa RD, Starkey J (2001) Photo Lin: a program to identify and analyze linear structures in aerial photographs, satellite images and maps. Comput Geosci 27(5):527–534

    Article  Google Scholar 

  • Cross AM (1988) Detection of circular geological features using the Hough transform. Int J Remote Sens 9(9):1519–1528

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS Lantau Island, Hong Kong. Geomorphology 42:213–238

    Article  Google Scholar 

  • Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Devi MRK, Singh T (2006) Morphotectonic setting of the Ganga Lake, Itanagar capital complex, Arunachal Himalaya. Geomorphology 76:1–11

    Article  Google Scholar 

  • Domínguez-Cuesta MJ, Jiménez-Sánchez M, Berrezueta E (2007) Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology 89:358–369

    Article  Google Scholar 

  • Drury SA (1986) Remote sensing of geological structures in temperate agriculture terrains. Geol Mag 123(2):113–121

    Article  Google Scholar 

  • Dymond JR, Ausseil AG, Shepherd JD, Buettner L (2006) Validation of a region-wide model of landslide susceptibility in the Manawatu–Wanganui region of New Zealand. Geomorphology 74:70–79

    Article  Google Scholar 

  • Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci 5:979–992

    Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility. Geomorphology 66:327–343

    Article  Google Scholar 

  • Fourniadis G, Liu JG, Mason PJ (2007) Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery: Wushan-Badong. Geomorphology 84:126–144

    Article  Google Scholar 

  • Gomes A, Gaspar JL, Goulart C, Queiroz G (2005) Evaluation of landslide susceptibility of Sete Cidades Volcano (S. Miguel Island, Azores). Nat Hazards Earth Syst Sci 5:251–257

    Article  Google Scholar 

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Article  Google Scholar 

  • Greenbaum D (1987) Lithological discrimination in central Snowdonia using airborne multispectral scanner imagery. Int J Remote Sens 8(6):799–816

    Article  Google Scholar 

  • Gritzner ML, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Gupta RP (1991) Remote sensing geology. Spring-Verlag, Berlin

    Google Scholar 

  • Gustafsson P (1994) SPOT satellite data for exploration of fractured aquifers in a semi-arid area in southeastern Botswana. Appl Hydrogeol 2(2):9–18

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci 6:115–131

    Google Scholar 

  • Haeberlin Y, Turberg P, Retière A, Senegas O, Parriaux A (2004) Validation of Spot-5 satellite imagery for geological hazard identification and risk assessment for landslides, mud and debris flows in Matagalpa, Nicaragua. Nat Resour Canada 35(1):273–278

    Google Scholar 

  • Hobbs WH (1904) Lineaments of the Atlantic border region. Geol Soc Am Bull 15:483–506

    Google Scholar 

  • Hung LQ, Batelaan O (2003) Environmental geological remote sensing and GIS analysis of tropical karst areas in Vietnam. In: Proceedings of the IEEE International Geoscience and Remote Sensing symposium (IGARSS), Toulouse, France, vol 4, 2964–2966

  • Hung LQ, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Remote sensing for environmental monitoring, GIS applications, and geology. In: Ehlers M, Michel U (eds), Proceedings of SPIE, vol 5983

  • Isiorho SA (1985) The significance of lineaments mapped from remotely sensed images of the 1:250,000 Lau Sheet in the Benue trough of Nigeria. Int J Remote Sens 6(6):911–918

    Article  Google Scholar 

  • Juhari MA, Ibrahim A (1997) Geological applications of LANDSAT thematic mapper imagery: mapping and analysis of lineaments in NW Peninsular Malaysia. ACRS. http://www.gisdevelopment.net/aars/acrs/1997/ts10/ts10001.asp

  • Karnieli A, Meiseis A, Fisher L, Arkin Y (1996) Automatic extraction and evaluation of geological linear features from digital remote sensing data using a Hough Transform. Photogramm Eng Remote Sens 62:525–531

    Google Scholar 

  • Karpuz MR, Roberts D, Olesen O, Gabrielsen RH, Herrevold T (1993) Application of multiple data sets to structural studies on Varanger Peninsula, Northern Norway. Int J Remote Sens 14(5):979–1003

    Article  Google Scholar 

  • Kavak KS (2005) Determination of Palaeotectonic and Neotectonic features around the Menderes Massif and the Gediz Graben (western Turkey) using Landsat TM image. Int J Remote Sens 26(1):59–78

    Article  Google Scholar 

  • Kim KD, Lee S, Oh HJ, Choi JK, Won JS (2006) Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS. Environ Geol 50:1183–1191

    Article  Google Scholar 

  • Kocal A, Duzgun HS, Karpuz C (2004) Discontinuity mapping with automatic lineament extraction from high resolution satellite imagery, In: Proceedings of the XXth ISPRS Congress, Istanbul, Turkey. Available online: http://www.isprs.org/istanbul2004/comm7/papers/205.pdf

  • Koch M, Mather PM (1997) Lineament mapping for groundwater resource assessment: a comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills, Sudan. Int J Remote Sens 27(20):4471–4493

    Google Scholar 

  • Koike K, Nagano S, Ohmi M (1995) Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Comput Geosci 21(9):1091–1104

    Article  Google Scholar 

  • Lee S (2003) Evaluation of waste disposal site using the DRASTIC system in Southern Korea. Environ Geol 44:654–664

    Article  Google Scholar 

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34(2):223–232

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491

    Article  Google Scholar 

  • Lee S, Jasmi AT (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  Google Scholar 

  • Lee S, Lee MJ (2006) Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Adv Space Res 38:2261–2271

    Article  Google Scholar 

  • Leech DP, Treloar PJ, Lucas NS, Grocott J (2003) Landsat TM analysis of fracture patterns: a case study from the coastal Cordillera of northern Chile. Int J Remote Sens 24(19):3709–3726

    Article  Google Scholar 

  • Lin ML, Tung CC (2003) GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77

    Article  Google Scholar 

  • Lin CW, Hsu CY, Yu TD (2007) The Chiuhsiungken fault: a candidate to trigger a hazardous earthquake in western Taiwan. J Asian Earth Sci 30(2):390–402

    Article  Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61:171–187

    Article  Google Scholar 

  • Mabee SB, Hardcastle KC, Wise DU (1994) A method of collecting and analyzing lineaments for regional scale fractured-bedrock aquifer studies. Groundwater 32(6):884–894

    Google Scholar 

  • Majumdar TJ, Bhattacharya BB (1988) Application of the Haar transform for extraction of linear and anomalous over part of Cambay Basin, India. Int J Remote Sens 9(12):1937–1942

    Article  Google Scholar 

  • Masoud A, Koike K (2006) Tectonic architecture through Landsat-7 ETM+/SRTMDEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J Afr Earth Sci 45:467–477

    Article  Google Scholar 

  • Mathew J, Jha VK, Rawat GS (2007) Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India. Int J Remote Sens 28(10):2257–2275

    Article  Google Scholar 

  • Mineral and Geosciences Department Malaysia (1985) Geological of Peninsular Malaysia

  • Morelli M, Piana F (2006) Comparison between remote sensed lineaments and geological structures in intensively uncultivated hills (Moanferrato and Langhe domains, NW Italy). Int J Remote Sens 26(7):1463–1475

    Google Scholar 

  • Mostafa ME, Bıshta AZ (2005) Significance of lineament patterns in rock unit classification and designation: a plot study on the Gharib-Dara area, northern Eastern Desert, Egypt. Int J Remote Sens 26(7):1463–1475

    Article  Google Scholar 

  • Mountrakis D, Pavlides S, Zouros N, Astaras T, Chatzipetros A (1998) Seismic fault geometry and kinematics of the 13 May 1995 Western Macedonia (Greece) earthquake. J Geodyn 26(2–4):175–196

    Article  Google Scholar 

  • Münch Z, Conrad J (2007) Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol J 15:19–28

    Article  Google Scholar 

  • Nagarajan R, Khire MV (1998) Debris slides of Varandh Ghat, west coast of India. Bull Eng Geol Environ 57:59–63

    Article  Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585

    Article  Google Scholar 

  • Nagarajan R, Roy A, Kumar RV, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58:275–287

    Article  Google Scholar 

  • Nefeslioglu HA, Duman, Tamer Y, Durmaz, Serap T (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology 94(3–4):401–418

    Article  Google Scholar 

  • Norini G, Groppelli G, Caprac L, De Benid E (2004) Morphological analysis of Nevado de Toluca volcano (Mexico): new insights into the structure and evolution of an andesitic to dacitic stratovolcano. Geomorphology 62:47–61

    Article  Google Scholar 

  • Novak ID, Soulakellis N (2000) Identifying geomorphic features using LANDSAT TM data processing techniques on Lesvos, Greece. Geomorphology 34:101–109

    Article  Google Scholar 

  • O’Leary DW, Friedman JD, Pohn HA (1976) Lineament, linear, lineation: some proposed new standards for old terms. Bull Geol Soc Am 87:1463–1469

    Article  Google Scholar 

  • Oguchi T, Aokib T, Matsuta N (2003) Identification of an active fault in the Japanese Alps from DEM-based hill shading. Comput Geosci 29:885–891

    Article  Google Scholar 

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32(1–2):81–100

    Article  Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36:325–334

    Article  Google Scholar 

  • Pal SK, Majumdar TJ, Bhattacharya AK (2006) Extraction of linear and anomalous features using ERS SAR data over Singhbhum Shear Zone, Jharkhand using fast Fourier transform. Int J Remote Sens 27(20):4513–4528

    Article  Google Scholar 

  • Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth C 26(9):697–703

    Google Scholar 

  • Pena SA, Abdelsalam MG (2006) Orbital remote sensing for geological mapping in southern Tunisia: implication for oil and gas exploration. J Afr Earth Sc 44:203–219

    Article  Google Scholar 

  • Perotto-Baldiviezo HL, Thurow TL, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras. Agric Ecosyst Environ 103:165–176

    Article  Google Scholar 

  • Pistocchi A, Luzi L, Napolitano P (2002) The use of predictive modelling techniques for optimal exploitation of spatial databases: a case study in landslide hazard mapping with expert system-like methods. Environ Geol 41:765–775

    Article  Google Scholar 

  • Pradhan RP, Singh RP, Buchroithner MF (2006) Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Adv Space Res 37(4):698–709

    Article  Google Scholar 

  • Pratt WK (1978) Digital image processing. Wiley, New York, 750 pp

  • Raghavan V, Masumoto S, Koike K, Nagano S (1995) Automatic lineament extraction from digital images using a segment tracing and rotation transformation approach. Comput Geosci 21(4):555–591

    Article  Google Scholar 

  • Raju NJ, Reddy TVK (1998) Fracture pattern and electrical resistivity studies for groundwater exploration. Environ Geol 34:175–182

    Article  Google Scholar 

  • Rao NS (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50:1067–1076

    Article  Google Scholar 

  • Rautela P, Lakhera RC (2000) Landslide risk analysis between Giri and Tons Rivers in Himachal Himalaya (India). Int J Appl Earth Obs Geoinf 2:153–160

    Article  Google Scholar 

  • Ricchetti E, Palombella M (2005) Application of Landsat 7 ETM+ imagery for geological lineament analysis of Southern Italy. In: Proceedings of International Geoscience and Remote Sensing symposium (IGARSS), Seoul, Korea, pp 5200–5203 (IEEE)

  • Richards JP (2000) Lineaments revisited. Soc Econ Geol 42:13–20

    Google Scholar 

  • Richetti E (2001) Structural geological study of Southern Apennine (Italy) using Landsat 7 imagery. In: Proceedings of International Geoscience and Remote Sensing symposium (IGARSS), Toronto, Canada, pp 211–213 (IEEE)

  • Rothery DA (1987) Decorrelation stretching and related techniques as an aid to image interpretation in geology. In: Proceedings of the thirteenth annual conference of the Remote Sensing Society, University of Nottingham, Nottingham, pp 194–203

  • Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach at the Eastern Alps (Vorarlberg, Austria). Geomorphology 94:314–324

    Article  Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Canga) Valley, Himalayas. Int J Remote Sens 23(2):357–369

    Article  Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Sahoo PK, Kumar S, Singh RP (2000) Neotectonic study of Ganga and Yamuna tear faults, NW Himalaya, using remote sensing and GIS. Int J Remote Sens 21:499–518

    Article  Google Scholar 

  • Saldivar-Sali A, Einstein HH (2007) A landslide risk rating system for Baguio, Philippines. Eng Geol 9:85–99

    Article  Google Scholar 

  • Sander P (2007) Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeol J 15:71–74

    Article  Google Scholar 

  • Sander P, Minor TB, Chesley MM (1997) Groundwater exploration based on lineament analysis and reproducibility tests. Ground Water 35(5):888–894

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Remote Sens 70(5):617–625

    Google Scholar 

  • Sarp G (2005) Lineament analysis from satellite images, northeast of Ankara. MSc thesis, Middle East Technical University

  • Sarup J, Muthukumaran M, Nitin M, Peshwa V (2006) Study of tectonics in relation to the seismic activity of the Dalvat area, Nasik District, Maharashtra, India using remote sensing and GIS techniques. Int J Remote Sens 27(12):2371–2387

    Article  Google Scholar 

  • Smith MJ, Clark CD (2005) Methods for the visualisation of digital elevation models for landform mapping. Earth Surf Process Landf 30(7):885–900

    Article  Google Scholar 

  • Solomon S, Ghebreab W (2006) Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J Afr Earth Sc 46(4):371–378

    Article  Google Scholar 

  • Sree Devi PD, Srinivasulu S, Kesava Raju K (2001) Hydrogeomorphological and groundwater prospects of the Pageru River Basin by using remote sensing data. Environ Geol 40:1088–1094

    Article  Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27(20):4599–4620

    Article  Google Scholar 

  • Süzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchments, Turkey. Eng Geol 71:303–321

    Article  Google Scholar 

  • Süzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a Fault Zone in Central Turkey. Int J Remote Sens 19(6):1101–1114

    Article  Google Scholar 

  • Temesgen B, Mohammed MU, Korme T (2001) Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia. Phys Chem Earth Part C 26:665–675

    Google Scholar 

  • Thiery Y, Malet JP, Sterlacchini S, Puissant A, Maquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92(1–2):38–59

    Article  Google Scholar 

  • Van Den Eechaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Vassilas N, Perantonis S, Charou E, Tsenoglou T, Stefouli M, Varoufakis S (2002) Delineation of lineaments from satellite data based on efficient neural network and pattern recognition techniques. In: Proceedings 2nd Hellenic conference on AI, SETN-2002, Thessaloniki, Greece, pp 355–366

  • Venkataraman G, Madhavan BB, Ratha DS, Banglani S (1997) Integration of geological and geophysical data for the identification of sulphide mineralized zones in Rajpura-Dariba belt, Rajasthan, India. Int J Remote Sens 18(6):1221–1232

    Article  Google Scholar 

  • Virdi NS, Philip G, Bhattacharya S (2006) Neotectonic activity in the Markanda and Bata river basins, Himachal Pradesh, NW Himalaya: a morphotectonic approach. Int J Remote Sens 27(10):2093–2099

    Article  Google Scholar 

  • Wang J, Howarth PJ (1990) Use of the Hough transform in automated lineament detection. IEEE Trans Geosci Remote Sens 28(4):561–566

    Article  Google Scholar 

  • Warner TA (1997) Geobotanical and lineament analysis of Landsat satellite imagery for hydrocarbon microseeps. In: Proceedings of natural gas conference, Houston, Texas

  • Wladis D (1999) Automatic lineament detection using digital elevation models with second derivative filters. Photogramm Eng Remote Sens 65(4):453–458

    Google Scholar 

  • Yassaghi A (2006) Integration of Landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagros, Iran. Int J Remote Sens 27(20):4529–4544

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects for the Kat Landslides (Tokat-Turkey) and susceptibility mapping by means of GIS. Environ Geol 50:461–472

    Article  Google Scholar 

  • Zlatopolsky AA (1997) Description of texture orientation in remote sensing data using computer program LESSA. Comput Geosci 23(1):45–62

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by Malaysian Science Fund under grant number 04-01-04-SF0676. The authors would like to thank Dr. Mostafa E. Mostafa from Nuclear Materials Authority, Egypt for his comments on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Ramli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramli, M.F., Yusof, N., Yusoff, M.K. et al. Lineament mapping and its application in landslide hazard assessment: a review. Bull Eng Geol Environ 69, 215–233 (2010). https://doi.org/10.1007/s10064-009-0255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-009-0255-5

Keywords

Mots clés

Navigation