Skip to main content

Advertisement

Log in

GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The case study presents GIS-aided statistically and physically based landslide susceptibility mapping in the landslide-prone Avutmus district of Sebinkarahisar (Giresun, Turkey). Field investigations, analysis of geological data and laboratory tests suggested that two important factors have acted together to cause sliding: ground water pressures and toe erosion. Frequency ratio (FR) and stability index mapping (SINMAP) were used to create the landslide susceptibility maps based on a landslide inventory; distance from drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index; and vegetation cover. Validation of the models indicated high quality susceptibility maps with the more realistic results were obtained from the statistically based FR model.

Résumé

L’étude de cas présente une cartographie de sensibilité aux glissements de terrain basée sur une approche physique et statistique, avec le support d’un SIG, cartographie réalisée dans le district d’Avutmus sujet aux glissements, région de Sebinkarahisar (Giresun, Turquie). Les travaux de terrain, les analyses de données géologiques et les essais de laboratoire ont fait apparaître deux facteurs importants agissant conjointement, à l’origine des glissements: les pressions d’eau du sol et l’érosion de pied de versant. Les indices FR fréquence des événements) et SINMAP (indice de stabilité) ont été utilisés pour réaliser les cartes de sensibilité aux glissements, prenant appui sur un inventaire des glissements, la distance aux axes de drainage, aux failles et aux routes, la pente et la morphologie des terrains, la position topographique, l’indice d’humidité, la couverture végétale. La validation des modèles permet de souligner la qualité de ces cartes de sensibilité, les résultats les plus réalistes étant obtenus à partir du modèle des fréquences d’événements qui s’appuie sur une approche statistique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • ArcGIS (version 9.1) (2005) Integrated geographical information system software. ESRI, CA

  • ASTM (1990) Soil and rock; dimension stone; geosynthetics. American Society for testing and materials, Sect. 4, vol 04.08, designation: D421, D422, D4318

  • Barka AA, Gülen L (1988) New constraints on age and total offset of the North Anatolian Fault Zone: implications for tectonics of the eastern Mediterranean region. METU J Pure Appl Sci 21(1–3):39–63

    Google Scholar 

  • Barredo JJ, Benavides A, Hervas J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Trijana basin, Gran Canaria Island, Spain. JAG2 (1), pp 9–23

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists, modeling with GIS. Pergamon Press, Oxford, p 398

  • Borga M, Dalla Fontana G, Da Ros D, Marchi L (1997) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2/3):81–88

    Google Scholar 

  • Burt T, Butcher D (1986) Stimulation from simulation—a teaching model of hillslope hydrology for use on microcomputers. J Geogr High Educ 10:23–39

    Article  Google Scholar 

  • Calcaterra D, de Riso R, Di Martire D (2004) Assessing shallow debris slide hazard in the Agnano Plain (Naples, Italy) using SINMAP, a physically based slope stability model. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema. Taylor & Francis, London, pp 177–186

    Google Scholar 

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Processes Landf 28:1125–1142

    Article  Google Scholar 

  • Cascini L, Critelli S, Gulla G, Di Nocera S (1991) A methodological approach to landslide hazard assessment: a case history. In: Proceedings of 16th international landslide conference. Balkema, Rotterdam, pp 899–904

  • Chacón J, Irigaray C, Fernández, T (1994) Large to middle scale landslide inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS, In: Proceedings of 7th IAEG congress, Balkema, Rotterdam, pp 4669–4678

  • Chacón J, Irigaray C, Fernández T (1996) From the inventory to the risk analysis: Improvements to a large scale GIS method, In: Chacón J, Irigaray C, Fernández T (eds) Proceedings of 8th international conference and field workshop on landslides, Balkema, Rotterdam, pp 335–342

  • Chacón J, Irigaray C, El Hamdouni R, Fernández T (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411

    Article  Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Dai FC, Lee CF, Zhang XH (2001) GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol 61:257–271

    Article  Google Scholar 

  • Dewey JF, Şengör AMC (1979) Aegean and surroundings regions: complex multiple and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing technique. Eng Geol 44:147–161

    Article  Google Scholar 

  • Hall FG, Townshend JR, Engman ET (1995) Status of remote sensing algorithms for estimation of land surface state parameters. Remote Sens Environ 51:138–156

    Article  Google Scholar 

  • Hammond C, Hall D, Miller S, Swetik P (1992) Level I Stability Analysis (LISA) Documentation Version 2.0, General Technical Report INT-285. United States Department of Agriculture, Forest Service Intermountain Research Station, USA

    Google Scholar 

  • Ives JD, Messerli B (1981) Mountain hazard mapping in Nepal: introduction to an applied mountain research project. Mt Res Dev 1(3–4):223–230

    Article  Google Scholar 

  • Koçyiğit A (1989) Suşehri basin: an activa fault-wedge basin on the North Anatolian Fault Zone, Turkey. Tectonophysics 167:13–29

    Article  Google Scholar 

  • Koçyiğit A, Özacar AA (2003) Extensional neotectonic regime through the NE edge of the outer Isparta angle, SW Turkey: new field and seismic data. Turkish J Earth Sci 12:67–90

    Google Scholar 

  • Lee S, Min K (2001) Statistical analyses of landslide susceptibility at Yongin. Korea Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J R Astr Soc 30:109–185

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling—a review of hydro-hydrological, geomorphological, and biological applications. Hydrol Processes 5:3–30

    Article  Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) A stability index approach to terrain stability hazard mapping. SINMAP user’s manual, pp 68

  • Pack RT, Tarboton DG, Goodwin CN (1998) Terrain stability mapping with SINMAP, technical description and users guide for version 1.00, report number 4114-0, Terratech Consulting Ltd., Salmon Arm (www.tclbc.com)

  • Rodhe A, Seibert J (1999) Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agric For Meteorol 98–99:325–340

    Article  Google Scholar 

  • Rupke J, Cammeraat E, Seijmonsbergen AC, Van Westen CJ (1988) Engineering geomorphology of the Widentobel catchment, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of the slope stability. Eng Geol 26:33–68

    Article  Google Scholar 

  • Seibert J, Bishop KH, Nyberg L (1997) A test of TOPMODEL’s ability to predict spatially distributed groundwater levels. Hydrol Processes 11:1131–1144

    Article  Google Scholar 

  • Şengör AMC (1980) Mesozoic–Cenozoic tectonic evolution of Anatolia and surrounding regions. Abstract, Bull Bur Rech Geol Minieres, France, pp 115–137

  • Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. Ph.D. dissertation Technical University Delft. ITC publication number 15, ITC, Enschede, p 245

  • Van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54(1–2):77–89

    Google Scholar 

  • Van Westen CJ, Soeters R, Sijmons K (2000) Digital geomorphological landslide hazard mapping of the Alpago area, Italy. Int J Appl Earth Observ Geoinf 2(1):51–59

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement, types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analyses and control. National Academy of Science, report 176, Washington DC, pp 11–35

  • Ward TJ, Ruh-Ming L, Simons DB (1982) Mapping landslide hazard in forest watershed. J Geotech Eng Div, ASCE 108(GT-2):319–324

    Google Scholar 

  • Weier J, Herring D (2005) Measuring vegetation (NDVI and EVI). Earth Observatory Library of NASA, http://earthobservatory.nasa.gov/Library/MeasuringVegetation/

  • Yilmaz I (2007) GIS based susceptibility mapping of karst depression in gypsum: a case study from Sivas basin (Turkey). Eng Geol 90:89–103

    Article  Google Scholar 

  • Yilmaz I, Yildirim M (2006) Structural and geomorphological aspects of the Kat landslides (Tokat-Turkey), and susceptibility mapping by means of GIS. Environ Geol 50(4):461–472

    Article  Google Scholar 

  • Yılmaz A, Oral A, Bilgiç T (1985) Yukarı Kelkit çayı yöresi ve güneyinin temel jeoloji özellikleri ve sonuçları. M.T.A report (in Turkish)

  • Zinko U, Seibert J, Dynesius M, Nilsson C (2005) Plant species numbers predicted by a topography based groundwater-flow index. Ecosystems 8:430–441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Işık Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, I., Keskin, I. GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Environ 68, 459–471 (2009). https://doi.org/10.1007/s10064-009-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-009-0188-z

Keywords

Mots clés

Navigation