Skip to main content
Log in

Assessment of deformation modulus of weak rock masses from pressuremeter tests and seismic surveys

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The deformation modulus of intact rock can be determined through standardized laboratory tests for heavily jointed rock masses but this is very difficult, while in situ tests are time-consuming and expensive. In this study, the deformation modulus of selected heavily jointed, sheared and/or blocky, weathered, weak greywacke, andesite and claystone were assessed, based on pressuremeter tests, geo-engineering characterization and seismic surveys. Empirical equations based on GSI and RMR values are proposed to indirectly estimate the deformation modulus of the greywackes. For the andesites, the spacing of the discontinuities is greater than the length of the pressuremeter probe hence the intact rather than rock mass deformation modulus is obtained. The pressuremeter test results from the claystones could not be correlated with the field data; the relationship between the ratio of rock mass modulus to intact rock modulus and RQD appears to give a better estimation of the deformation modulus.

Résumé

Le module de déformation de roches intactes peut être déterminé à partir d’essais de laboratoire normalisés. Ces essais peuvent difficilement donner les paramètres de déformabilité de masses rocheuses intensément fracturées. Par ailleurs les essais en place sont longs et coûteux. Dans cette étude, les modules de déformation ont été évalués pour des grauwackes, des andésites et des argilites intensément fracturés ou altérés, en utilisant l’essai pressiométrique, des classifications géotechniques et des résultats de prospections sismiques. Des équations empiriques basées sur les indices GSI et RMR sont proposées afin d’estimer les modules de déformation de grauwackes. Pour les andésites testées, l’espacement des discontinuités est plus grand que la longueur de la sonde pressiométrique. De ce fait, c’est plus le module de déformation de la matrice rocheuse qui est obtenu, plutôt que celui du massif rocheux. Les résultats des essais pressiométriques relatifs aux argilites n’ont pu être corrélés avec des données de terrain. La relation entre d’une part le rapport module du massif rocheux sur module de la matrice rocheuse et d’autre part l’indice RQD apparaît plus adaptée pour donner une bonne estimation du module de déformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akyurek B, Bilginer E, Akbas B, Hepsen N, Pehlivan S, Sunu O, Soysal Y, Dager Z, Catal E. Sozeri B, Yildirim H, Hakyemez Y (1984) Geological features of Ankara-Elmadag-Kalecik and vicinity. Jeoloji Muhendisliği 20: 31–46 (in Turkish)

    Google Scholar 

  • ASTM (2000) Standard test method for pressuremeter testing in soils: annual book of ASTM Standards. ASTM Publications, Philadelphia

    Google Scholar 

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor & Francis, London, 729 p

  • Bieniawski ZT (1978) Determining rock mass deformability: experience from case histories. Int J Rock Mech Min Sci 15:237–247

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York, p 237

    Google Scholar 

  • Centre D’Etudes Ménard (1975) Interpretation and application of pressuremeter test results to foundation design. Sols-soils no 26, 44 p

  • Deere DU, Miller RP (1966) Engineering classification and index properties for intact rock. Technical report no. AFNL-TR-65-116. Air Force Weapons Laboratory, New Mexico

    Google Scholar 

  • Erol O (1956) An investigation on geology and geomorphology of Elmadagi and its vicinity at southwest of Ankara. Publication of MTA, no. 9 (in Turkish)

  • Goodman RE (1989) Introduction to rock mechanics. Wiley, New York, 562 p

  • Hagedoom JG (1965) The plus–minus method of interpreting seismic refraction sections. Geophys Prospect 7:158–182

    Article  Google Scholar 

  • Hoek E (1999) Putting numbers to geology—an engineer’s view point. Q J Eng Geol 32:1–19

    Article  Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring. In: Ulusay R, Hudson JA (eds) Compilation arranged by the ISRM Turkish National Group, Kozan Ofset, Ankara, Turkey, 628 p

  • Kulhawy FH (1975) Stress deformation properties of rock and rock discontinuities. Eng Geol 9(4):327–350

    Article  Google Scholar 

  • Lamé G (1852) Leçons sur la théorie mathématique de l’élasticité des corps solides. Bachelier, Paris

    Google Scholar 

  • Mair RJ, Wood DM (1987) Pressuremeter testing. Ciria Butterworths, London, 160 p

  • Ménard L (1961) Influence de l’amplitude et de l’histoire d’un champ de contraintes sur le tassement d’un sol de foundation. C. R. 5 e Congrés International MSTF, Tome 1, Paris

  • Nurlu YE (1996) Determination–classification and mapping of the degree of weathering in Ankara greywackes. M.Sc. thesis, Hacettepe University, Department of Geological Engineering (in Turkish)

  • Orhan M, Isik NS, Topal T, Ozer M (2006) Effect of weathering on the geomechanical properties of andesite, Ankara, Turkey. Env Geol 50(1):85–100

    Article  Google Scholar 

  • Ozilcan S (2004) Geoengineering properties of the grounds at the western part of Ankara. M.Sc. thesis, Hacettepe University, Department of Geological Engineering (in Turkish)

  • Palmström A, Singh R (2001) The deformation modulus of rock masses—comparisons between in situ tests and indirect estimates. Tunn Undergr Space Technol 16:115–131

    Article  Google Scholar 

  • Sonmez H, Ulusay R (1999) Modifications to the geological strength index (GSI) and their applicability to stability of slopes. Int J Rock Mech Min Sci 36(6):219–233

    Google Scholar 

  • Sonmez H, Ulusay R (2002) A discussion on the Hoek–Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Yerbilimleri 26:77–99

    Google Scholar 

  • Sonmez H, Gurkan B, Sonmez B (2008). Engineering characteristics of Ankara greywacke under the foundation of the Beytepe open air theatre, Ankara, Turkey. Environmental Geology (in press, DOI 10.1007/s00254-007-0994-1)

  • Stacey TR (1977) Seismic assessment of rock masses. Symposium on exploration for rock engineering. Johannsburg 2:113–117

    Google Scholar 

  • Stapledon DH, Rissler P (1983) Site exploration and evaluation. Proceedings of the 5th international congress on rock mechanics. Melbourne 3:G5–G25

    Google Scholar 

  • Ulusay R, Gokceoglu C, Sulukcu S (2001) Draft ISRM suggested method for determining block punch strength index (BPI). Int J Rock Mech Min Sci 38:1113–1119

    Article  Google Scholar 

  • Zhang L, Einstein H (2004) Using RQD to estimate the deformation modulus of rock masses. Int J Rock Mech Min Sci 41:337–341

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resat Ulusay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isik, N.S., Doyuran, V. & Ulusay, R. Assessment of deformation modulus of weak rock masses from pressuremeter tests and seismic surveys. Bull Eng Geol Environ 67, 293–304 (2008). https://doi.org/10.1007/s10064-008-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-008-0163-0

Keywords

Mots clés

Navigation