Skip to main content
Log in

Characterization of cemented paste backfill pore structure using SEM and IA analysis

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper presents a pore structure study conducted on different cemented paste backfill (CPB) samples using scanning electron microscopy and image analysis (SEM–IA). The SEM–IA approach was used to estimate three pore structure parameters: total porosity (n), pore size distribution (PSD), and pore space tortuosity (T). The influence of three binders and three types of water (one de-ionised and two sulphated) was also assessed after 14 and 92 days of curing. The evaluation of n by SEM–IA showed a decrease with curing time that was in accordance with the CPB strength increase. The PSD and the T were only slightly influenced by the water chemistry and the type of binder; the parameters evolved with curing time and were related to a decrease in pore size and an increase in tortuosity. Changes of the pore structure were more significant with sulphated mixing water and the OPC-slag binder. The methods and results presented here will be useful to predict some properties of CPB such as saturated hydraulic conductivity, water retention curve and effective diffusion coefficient.

Résumé

Cet article présente l’étude de la structure des pores de différents remblais cimentés en pâte (RCP) par microscopie électronique à balayage et analyse d’image (MEB-AI). L’approche AI a été utilisée pour estimer trois paramèters associés à la structure des pores: la porosité totale (n), la distribution de la taille des pores (DTP) et la tortuosité (T). L’influence de trois ciments et de trois types d’eau de gâchage (une déionisée et deux sulfatées) a aussi été investiguée après 14 et 92 jours de cure. L’évaluation de n par AI a montré une diminution de ce paramètre avec le temps de cure, ce qui est en accord avec le gain de résistance mécanique des échantillons. La DTP et le paramètre T n’ont été que légèrement influencées par la chimie de l’eau et le type de ciment. Néanmoins, ces paramètres ont évolué avec le temps de curage en démontrant une diminution de la dimension des pores et une augmentation de la tortuosité. Les changements les plus importants au niveau de la structure des pores ont été observés avec l’eau de gâchage sulfatée et le ciment à base de laitier de haut-fourneau. Les méthodes élaborées et les résultats obtenus seront utiles afin d’estimer des paramètres importants des RCP tels la conductivité hydraulique, la courbe de rétention d’eau et le coefficient de diffusion effectif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aachib M, Mbonimpa M, Aubertin M (2004) Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water Air Soil Pollut 156:163–193

    Article  Google Scholar 

  • Amaratunga LM, Hein GG (1997) Development of high strength total tailings paste fill using fine sulphide mill tailings. In: Proceedings of 29th annual meeting of the Canadian Mineral Processors, Ottawa, Canada, 21–23 January, pp 293–305

  • Ammouche A, Riss J, Breysse D, Marchand J (2001) Image analysis for the automated study of microcracks in concrete. Cem Concr Compos 23(2–3):267–278

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Petrol Tech 1:55–62

    Google Scholar 

  • Aubertin M, Bussière B, Chapuis RP (1996) Hydraulic conductivity of homogenized tailings from hard rock mines. Can Geotech J 33(3):470–482

    Article  Google Scholar 

  • Bal’shin MY (1949) Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous metal-ceramic materials. Doklady Akademii Nauk SSSR 67(5):831–834

    Google Scholar 

  • Bartoli F, Genevois-Gomendy V, Royer JJ, Niquet S, Vivier H, Grayson R (2005) A multiscale study of silty soil structure. Eur J Soil Sci 56(2):207–223

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover Publications, Mineola

    Google Scholar 

  • Belem T, Bussière B, Benzaazoua M (2001) The effect of microstructural evolution on the physical properties of paste backfill. Tailings and Mine Waste’01. Balkema Publishers, Fort Collins, pp 365–374, 16–19 January

    Google Scholar 

  • Bentz DP, Stutzman PE, Haecker CJ, Remond, S (1999) SEM/X-Ray imaging of cement-based materials. Microscopy applied to building materials, 7th Euroseminar. In: Pietersen HS, Larbi JA, Janssen HHA (eds) Proceedings, Delft, The Netherlands, 29 June–2 July, pp 457–466

  • Benzaazoua M (1996) Caractérisation physico-chimique et minéralogique de produits miniers sulfurés en vue de la réduction de leur toxicité et de leur valorisation. Ph. D. Thesis, Institut National Polytechnique de Lorraine, Nancy, France

  • Benzaazoua M, Ouellet J, Servant S, Newman P, Verburg R (1999) Cementitious backfill with high sulfur content Physical, chemical, and mineralogical characterization. Cement Concr Res 29(5):719–725

    Article  Google Scholar 

  • Benzaazoua M, Belem T, Jolette D (2000) Investigation de la stabilité chimique et son impact sur la qualité des remblais miniers cimentés. ISBN 2-551-20431-3, IRSST Report R-260, Montreal, Quebec

  • Benzaazoua M, Belem T, Bussière B (2002) Chemical factors that influence the performance of mine sulphidic paste backfill. Cement Concr Res 32(7):1133–1144

    Article  Google Scholar 

  • Benzaazoua M, Fall M, Ouellet S (2004) Étude pluridisciplinaire visant à mettre au point un outil expert pour la prédiction du comportement des remblais en pâte. Report Report R-390, Montreal, Quebec

  • Benzaazoua M, Bois D, Belem T, Gauthier P, Ouellet S, Fall M, St-Onge JF (2005) Remblais souterrains, évolution des connaissances et de la pratique. 20th Colloque de contrôle de terrains, Association Minière du Québec, Val d’Or, Quebec, 22–23 March, p 23

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton

    Google Scholar 

  • Boudreau BP (1996) The diffusive tortuosity of fine-grained unlithified sediments. Geochim Cosmochim Acta 60(16):3139–3142

    Article  Google Scholar 

  • Boving TB, Grathwohl P (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53(1–2):85–100

    Article  Google Scholar 

  • Brackebusch FW (1994) Basics of paste backfill systems. Min Engng 46(10):1175–1178

    Google Scholar 

  • Bussière B (1993) Évaluation des propriétés hydrogéologiques des résidus miniers utilisés comme barrières de recouvrement. M. Sc. A. Thesis, École Polytechnique de Montréal, Montréal, Canada

  • Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng 15:150–156

    Google Scholar 

  • Cayouette J (2003) Optimization of the paste backfill plant at Louvicourt mine. CIM Bulletin, Canadian Institute of Mining. November/December, pp 51–57

  • Collin M, Rasmuson A (1988) A comparison of gas diffusivity models for unsaturated porous media. Soil Sci Soc Am J 52:1559–1565

    Article  Google Scholar 

  • Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cement Concr Res 29(6):933–943

    Article  Google Scholar 

  • Coster M, Chermant J-L (2001) Image analysis and mathematical morphology for civil engineering materials. Cement Concr Compos 23(2–3):133–151

    Article  Google Scholar 

  • Cousin I, Porion P, Renault P, Levitz P (1999) Gas diffusion in silty-clay soil: experimental study on an unsaturated soil core and simulation in its three dimensional reconstruction. Eur J Soil Sci 50:249–259

    Article  Google Scholar 

  • Darwin D (2001) Image analysis. In: Ramachandran VS, Beaudoin JJ (eds) Handbook of analytical techniques in concrete science and technology, Chap 19. Noyes Publications/William Andrew Publishing, LLC Norwich, pp 800–819

  • Delerue JF, Perrier E, Yu ZY, Velde B (1999) New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils. J Phys Chem Earth 24(7):639–644

    Article  Google Scholar 

  • Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cement Concr Res 30(10):1517–1525

    Article  Google Scholar 

  • Diamond S, Leeman ME (1995) Pore size distributions in hardened cement paste by SEM image analysis. Mater Res Soc Symp Proc 370:217–226

    Google Scholar 

  • Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn., Academic Press, London

    Google Scholar 

  • Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44(3):777–779

    Article  Google Scholar 

  • Fall M, Benzaazoua M, Ouellet S (2005) Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Miner Eng 18(1):41–44

    Article  Google Scholar 

  • Godbout J (2005) Évolution des propriétés hydriques des remblais miniers cimentés en pâte durant le curage, M. Sc. A. Thesis, École Polytchnique de Montréal, Montréal, Canada

  • Goldstein [E1]JI, Romig AD, Newbury DE, Lyman CE, Echlin P, Fiori C, Joy DC, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis, 2nd edn.. Plenum Publisher, New York

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  • Hassani F, Archibald J (1998) Mine backfill. CD-ROM, Canadian Institute of Mining, Canada

    Google Scholar 

  • Iversen N, Jorgensen BB (1993) Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochim Cosmochim Acta 57(3):571–578

    Article  Google Scholar 

  • Jiang L, Guan Y (1999) Pore structure and its effect on strength of high-volume fly ash paste. Cement Concr Res 29(4):631–633

    Article  Google Scholar 

  • Johnson DL, Plona TJ, Scala C, Pasierb F, Kojima H (1982) Tortuosity and acoustic slow waves. Phys Rev Lett 49(25):1840–1844

    Article  Google Scholar 

  • Jones PH, Buford TB (1951) Electric logging applied to ground-water exploration. Geophysics 16(1):115–139

    Article  Google Scholar 

  • Kosugi K (1999) General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci Soc Am J 63:270–277

    Article  Google Scholar 

  • Lamos AW, Clark IH (1989) The influence of material composition and sample geometry on the strength. In: Hassani, et al (eds) Innovation in mining backfill technology. Balkema, Rotterdam, pp 89–94

  • Lange DA, Jennings HM, Shah SP (1994) Image analysis techniques for characterization of pore structure of cement-based materials. Cement Concr Res 24(5):841–853

    Article  Google Scholar 

  • Launeau P, Robin P-YF (1996) Fabric analysis using the intercept method. Tectonophysics 267(1–4):91–119

    Article  Google Scholar 

  • le Roux K-A (2004) In situ properties and liquefaction potential of cemented paste backfill, Ph. D. Thesis, University of Toronto, Canada

  • Li L, Aubertin M (2003) A general relationship between porosity and uniaxial strength of engineering materials. Can J Civil Eng, 30(4):644–658

    Article  Google Scholar 

  • Luo R, Cai Y, Wang C, Huang X (2003) Study of chloride binding and diffusion in GGBS concrete. Cement Concr Res 33(1):1–7

    Article  Google Scholar 

  • Mabes DL, James HH, Williams RE (1977) Physical properties of Pb–Zn mine-process wastes. In: Proceedings of the conference on geotechnical practice for disposal of solid waste materials, specialty conference of the geotechnical engineering division, Ann Arbour, Michigan, New York, 13–15 June, pp 103–117

  • Maerki M, Wehrli B, Dinkel C, Müller B (2004) The influence of tortuosity on molecular diffusion in freshwater sediments of high porosity. Geochim Cosmochim Acta 68(7):1519–1528

    Article  Google Scholar 

  • Manheim FT, Waterman LS (1974) Diffusimetry (diffusion constant estimation) on sediment cores by resistivity probe. In: von der Borch CC, Sclater GC (eds) Initial reports of the deep sea drilling project, pp 663–670

  • Millington RJ, Shearer RC (1971) Diffusion in aggregated porous media. Soil Sci 111:372–378

    Google Scholar 

  • Mitchell JK (1993) Fundamentals of soil behaviour, 2nd edn. Wiley Publisher, London

    Google Scholar 

  • Moldrup P, Olesen T, Komatsu T, Schjønning P, Rolston DE (2001) Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65:613–623

    Article  Google Scholar 

  • Mota M, Teixeira JA, Yelshin A (1999) Image analysis of packed beds of spherical particles of different sizes. Sep Purif Technol 15:59–68

    Article  Google Scholar 

  • Mouret M, Ringot E, Bascoul A (2001) Image analysis: a tool for the characterisation of hydration of cement in concrete––metrological aspects of magnification on measurement. Cement Concr Compos 23(2–3):201–206

    Article  Google Scholar 

  • Neville AM (1981) Properties of concrete, 3rd edn. Pitman Publisher, London

    Google Scholar 

  • Niu Q, Feng N, Yang J, Zheng X (2002) Effect of superfine slag powder on cement properties. Cement Concr Res 32(4):615–621

    Article  Google Scholar 

  • Odler I, Röbler M (1985) Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cement Concr Res 15(3):401–410

    Article  Google Scholar 

  • O’Farrell M, Wild S, Sabir BB (2001) Pore size distribution and compressive strength of waste clay brick mortar. Cement Concr Compos 23(1):81–91

    Article  Google Scholar 

  • Ouellet S (2006) Mineralogical characterization, microstructural evolution and environmental behaviour of mine cemented paste backfills. Ph.D. thesis, Université du Québec en Abitibi-Témiscamingue, Canada, (http://www.uqat.ca/bibliotheque/theses/sergeouellet.pdf)

  • Ouellet S, Bussière B, Benzaazoua M, Aubertin M, Belem T (2004) Effect of binder type and mixing water chemistry on microstructural evolution of cemented paste backfill. In: Proceedings of the 57th annual Canadian geotechnical conference and 5th joint IAH-CNC/CGS conference, Quebec City, Canada, 23–27 October, p 8

  • Ouellet S, Bussière B, Mbonimpa M, Benzaazoua M, Aubertin M (2006) Reactivity of an underground mine sulphidic cemented paste backfill. Miner Eng 19(5):407–419

    Article  Google Scholar 

  • Ouellet S, Bussière B, Aubertin M, Benzaazoua M (2007) Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results, Cement Concr Res (in press)

  • Poon CS, Wong YL, Lam L (1997) The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars. Constr Build Mater 11(7–8):383–393

    Article  Google Scholar 

  • Potvin Y, Fourie A (2005) Paste fill in Australia. Symposium 2005, mines and the environment, Rouyn-Noranda, Canada, 15–18 May, p 16

  • Ramachandran VS, Beaudoin JJ (2001) Handbook of analytical techniques in concrete science and technology, National Research Council of Canada, Noyes Publisher

  • Ramlochan T, Grabinsky MW, Hooton RD (2004) Microstructural and chemical investigations of cemented paste backfills, Tailings and Mine Waste ‘04, Vail, Colorado, 10–13 October, pp 293–304

  • Ringot E, Bascoul A (2001) About the analysis of microcracking in concrete. Cement Concr Compos 23(2–3):261–266

    Article  Google Scholar 

  • Russ JC (1990) Computer-assisted microscopy: the measurement and analysis of images. Plenum Press, New York

    Google Scholar 

  • Ruzyla K (1986) Characterization of pore space by quantitative image analysis. SPE Formation Evaluation, August, pp 389–398

  • Rzhevsky V, Novik G (1971) The physics of rocks. MIR Publisher, Moscow

    Google Scholar 

  • Salem HS, Chilingarian GV (1999) The cementation factor of Archie’s equation for shaly sandstone reservoirs. J Petrol Sci Eng 23(2):83–93

    Article  Google Scholar 

  • Sammartino S, Partier P, Sardini P, Meunier A, Tevissen E (1999) Evolution of fluid pathways of Charroux-Civary tonalite (part I): alteration effects––an analytical approach. Phys Chem Earth Solid Earth Geodes 24(7):601–606

    Article  Google Scholar 

  • Sardini P, Sammartino S, Meunier A, Tevissen E (1999) Evolution of fluid pathways of Charroux-Civray tonalite (part II): numerical study of microcracks networks. Phys Chem Earth Solid Earth Geodes 24(7):621–625

    Article  Google Scholar 

  • Schaap MG, Lebron I (2001) Using microscope observations of thin sections to estimate soil permeability with the Kozeny-Carman equation. J Hydrol 251(3–4):186–201

    Article  Google Scholar 

  • Scheidegger AE (1974) The physics of flow through porous media. 3rd edn. University of Toronto Press, Toronto

    Google Scholar 

  • Scrivener KL (2004) Backscattered electron imaging of cementitious microstructures: Understanding and quantification. Cement Concr Compos 26(8):935–945

    Article  Google Scholar 

  • Scrivener KL, Patel HH, Pratt PL, Parrott LJ (1987) Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis. Mat Res Soc Symp Proc 85:67–76

    Google Scholar 

  • Simms PH (2003) A fundamental study of unsaturated flow in compacted clayey soil. Ph. D. Thesis, University of Western Ontario, Canada

  • Simms PH, Yanful EK (2004) A discussion of the application of mercury intrusion porosimetry for the investigation of soils, including an evaluation of its use to estimate volume change in compacted clayey soils. Géotechnique 54(6):421–426

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and minesoils, EPA 600/2-78-054

  • Solymar M, Fabricius IL (1999) Image analysis and estimation of porosity and permeability of Arnager greensand, Upper Cretaceous, Denmark. Phys Chem Earth Solid Earth Geodes 24(7):587–591

    Article  Google Scholar 

  • Spangenberg E, Spangenberg U, Heindorf C (1998) An experimental study of transport properties of porous rock salt. Phys Chem Earth 23(3):367–371

    Article  Google Scholar 

  • Sweerts J-PRA, Kelly CA, Rudd JWM, Hesslein R, Cappenberg TE (1991) Similarity of whole-sediment molecular diffusion coefficients in freshwater sediments of low and high porosity. Limnol Oceanogr 36(2):335–342

    Google Scholar 

  • Tumidajski PJ, Lin B (1998) On the validity of the Katz–Thompson equation for permeabilities in concrete. Cement Concr Res 28(5):643–647

    Article  Google Scholar 

  • Tumidajski PJ, Schumaker AS, Perron S, Gu P, Beaudoin JJ (1996) On the relationship between porosity and electrical resistivity in cementitious systems. Cement Concr Res 26(4):539–544

    Article  Google Scholar 

  • Ullman WJ, Aller RC (1982) Diffusion coefficients in near shore marine sediments. Limnol Oceanogr 27(3):552–556

    Article  Google Scholar 

  • Vervoort RW, Cattle SR (2003) Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J Hydrol 272(1–4):36–49

    Article  Google Scholar 

  • Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci 7:115–116

    Article  Google Scholar 

  • Winslow DN, Diamond S (1970) A mercury porosimetry study of the evolution of porosity in Portland cement. J Mater 5(3):564–585

    Google Scholar 

Download references

Acknowledgments

Funding for this work has been provided from the Industrial NSERC Polytechnique-UQAT Chair on Environment and Mine Wastes Management (http://www.polymtl.ca/enviro-geremi). A NSERC Postgraduate Scholarship to the first author also supported this research. The authors would also like to extend their thanks to the personal of URSTM for their support, to Dr. Li Li for performing porosity versus strength analysis, and to Professor Éric Pirard for valuable comments on IA techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bussière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouellet, S., Bussière, B., Aubertin, M. et al. Characterization of cemented paste backfill pore structure using SEM and IA analysis. Bull Eng Geol Environ 67, 139–152 (2008). https://doi.org/10.1007/s10064-007-0117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-007-0117-y

Keywords

Mots clés

Navigation