Skip to main content
Log in

Comparison of geophysical methods for sub-surface mapping of faults and fracture zones in a section of the Viggja road tunnel, Norway

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Results from site investigations, 2D resistivity, refraction seismic and VLF on a section of tunnel near Trondheim, show that 2D resistivity data are most valuable for interpreting geological structures in the sub-surface. VLF only identifies zones and does not indicate thickness, width or dip direction. The method is also sensitive to technical installations. Refraction seismic is valuable for mapping depth to bedrock, location and width of fracture zones but cannot indicate the depth or dip direction of such zones. With 2D resistivity, the position of a zone is well identified. This method may also provide information on the depth and width of the zone as well as the dip direction. In most cases 2D resistivity clearly identifies zones in the bedrock that can be observed as fault and/or fracture zones in the tunnel. The results described in this paper show a good correlation between the resistivity profiles, mapped structures on the surface and mapped zones in the tunnel.

Résumé

Les résultats de reconnaissances géophysiques par les méthodes de résistivité 2D, de réfraction sismique et d’électromagnétisme VLF, sur une section de tunnel près de Trondheim, montrent que la résistivité 2D est la plus intéressante pour la reconnaissance des structures géologiques de sub-surface. La méthode VLF différencie uniquement des zones sans en donner les caractéristiques d’épaisseur, de largeur et direction de pendage. La méthode est par ailleurs influencée par les installations techniques. La sismique réfraction est intéressante pour cartographier la profondeur du substratum, identifier les zones fracturées et leur largeur, mais ne peut indiquer leurs épaisseurs et directions de pendage. La méthode des résistivités 2D permet de bien localiser ces zones. De plus, la méthode fournit les informations de largeur, d’épaisseur et de direction de pendage. Dans la plupart des cas, la résistivité 2D a identifié clairement les zones de substratum reconnues comme zones de fractures ou de faille dans le tunnel. Les résultats présentés dans cet article montrent une bonne corrélation entre les profils de résistivité, les structures cartographiées en surface et les zones cartographiées en tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Dahlin T (1993) On the automation of 2D resistivity surveying for engineering and environmental application. Ph.D. Thesis. Department of Engineering Geology, Lund Institute of Technology, Lund University

  • Dalsegg E, Rønning JS (2002) Tunnelprosjektet. Geofysiske målinger Langvatnet - øst, Lunner, Oppland. Geological Survey of Norway, Trondheim, NGU-Rapport 2002.106: 1–15 (in Norwegian) ISSN 0800-3416

  • Dalsegg E, Elvebakk E, Rønning JS (2003a) Tunnelprosjektet. Geofysiske bakkemålinger og borehullslogging, Jong - Asker, Asker og Bærum kommune, Akershus. Geological Survey of Norway, Trondheim, NGU Rapport 2003.006: 1–72 (in Norwegian) ISSN 0800-3416

  • Dalsegg E, Elvebakk H, Rønning JS, Mauring E, Tønnesen JF (2003b) Tunnelprosjektet. Geofysiske bakkemålinger og borehullslogging, E39, Skaun kommune, Sør-Trøndelag. Geological Survey of Norway, Trondheim, NGU Rapport 2003.067: 1–80 (in Norwegian) ISSN 0800-3416

  • Grønlie A, Nilsen B, Roberts D (1991) Brittle deformation history of fault rocks on the Fosen Peninsula, Trøndelag, Central Norway. NGU Bulletin 421:39–57

    Google Scholar 

  • Holmøy KH (2002) Oppsummering av utførte undersøkelser og prognoser for innlekkasje ved Grualiatunnelen, Miljø og samfunnstjenlige tunneler, delprosjekt A. Vegdirektoratet, Oslo, Report 15: 1–15 (in Norwegian)

  • Holmøy KH (2003) Lunnertunnelen - hvilken informasjon ga de enkelte undersøkelsesmetodene? - Sammenligning mellom prognose og faktiske forhold. In: Undersøkelser for anlegg i berg - Kursdagene ved NTNU 2003. NTNU, NIF : Oslo - innlegg nr.14: 1–24 (in Norwegian)

  • Hunter S, Haenel R (2002) Atlas of geothermal resources in Europe. European Commission, Germany. Publication NO EUR 17811 of the Eiropean Commission ISBN 92-828-0999-4

  • Hurich CA, Roberts D (1997) A seismic reflection profile from Stjordalen to Outer Fosen, central Norway; a note on the principal results. NGU Bulletin - 433: 18-19 ISSN 0332-5768

  • Karlsrud K, Erikstad L, Snilsberg P (2003) Miljø- og samfunnstjenlige tunneler - Undersøkelser og krav til innlekkasje for å ivareta ytre miljø. Vegdirektoratet, Oslo, Publ. No. 103: 1-98 (in Norwegian) ISSN 0803-6950

  • Lindstrøm M, Kveen A (2004) Miljø- og samfunnstjenlige tunneler - Sluttrapport. Vegdirektoratet, Oslo, Report Publ. No. 105: 1–71 (in Norwegian) ISSN 0803-6950

  • Loke MH (2001) RES2DINV version 3.4. Geoelectrical imaging 2D & 3D. Instruction manual. 10.15.2004 http://www.geoelectrical.com

  • Loke MH (2002) RES2DMOD ver. 3.01 Rapid 2D resistivity forward modelling using the finite-difference and finite-element methods. http://www.geoelectrical.com

  • Palmstrøm A, Nilsen B, Pedersen KB, Grundt L (2003) Correct extent of site investigations for underground facilities. Project: Tunnels for the Citizen. Directorate of Public Roads, Oslo, Publ. No. 101: 1–116 (in Norwegian) ISSN 0803-6950

  • Paterson NR, Ronka V (1971) Five years of surveying with the very low frequency electro magnetic method. Geoexploration 9:7–26

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. John Wiley & Sons, Inc, England, 796 ISBN 0-471-95555-8

  • Rønning JS (2003) Miljø- og Samfunnstjenlige Tunneler. Delprosjekt A, Forundersøkelser. Sluttrapport. Vegdirektoratet, Oslo, Report Publ. No. 102 (in Norwegian): 1-66 ISSN 0803-6950

  • Rønning JS, Dalsegg E, Elvebakk H, Storrø G (2003) Characterization of fracture zones in bedrock using 2D resistivity. In: 9th meeting of environmental and engineering geophysics. Prague, Czech Republic, Czech Association of the Applied Geophysicists: Czech Republic P-005

  • Sheehan JR, Doll WE, Mandell WA (2005) An evaluation of methods and available software for seismic refraction tomography analysis. J Environ Eng Geophys 10:21–34

    Article  Google Scholar 

  • Siddans AWB (2002) Structural geology using borehole wall imagery: case study of an OPTV log in flagstones, North Scotland. First Break 20:623–629

    Google Scholar 

  • Solli A, Grenne T, Slagstad T, Roberts D (2001) Trondheim. Berggrunnskart Målestokk 1:50 000, Kartbladnummer 1621IV. Geological Survey of Norway, Trondheim

  • Stefanussen W (2005) Ingeniørgeologisk kartlegging i tunnel som bygget dokumentasjon, permanent sikring Viggjatunnelen (lengde: 2713 m) Profil nr 14400–17250. BVnr: 16-606 (in Norwegian): 1–19

  • Thunehed H, Olsson O (2004) Borehole corrections for a thick resistivity probe. J Environ Eng Geophys 9:217–224

    Article  Google Scholar 

  • Todnem L, Stefanussen W, Aagaard B (2004) Miljøovervåkning, Delrapport, Project Repport: 1–17 (in Norwegian)

  • Wellings SA, Sturt BA (1998) Tectonic setting of the Tronfjell Massif; further evidence for pre-Scandian orogenesis in the Trondheim nappe complex, central Norway. NGU Bulletin - 434: 109-115 ISSN 0332-5768

  • Westerdahl H (2003) Seismisk modellering; modellering av seismiske data over løsmassefylte depresjoner, svakhetssoner og ved kabelheng - “Miljø- og samfunnstjenlige tunneler”. Vegdirektoratet, Teknologiavdelingen, Oslo, Norway, Report 32: 1–50 (in Norwegian)

  • Wolff FC (1976) Geologisk kart over Norge, berggrunnskart TRONDHEIM 1:250.000. Geological Survey of Norway, Trondheim (in Norwegian)

Download references

Acknowledgement

The authors thank Skanska Norway AS for their cooperation and for making tunnel construction data available. In particular, Roar Sve at Skanska, and consultants Lillian Todnem and Werner Stefanussen at Sweco are thanked for their help and Statens vegvesen for access to the tunnel. Geo Vista AB and Swedish Nuclear Fuel and Waste Management Co (SKB) permitted the use of correction software on resistivity data from boreholes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guri Venvik Ganerød.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganerød, G.V., Rønning, J.S., Dalsegg, E. et al. Comparison of geophysical methods for sub-surface mapping of faults and fracture zones in a section of the Viggja road tunnel, Norway. Bull Eng Geol Environ 65, 231–243 (2006). https://doi.org/10.1007/s10064-006-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-006-0041-6

Keywords

Mots clés

Navigation