Skip to main content
Log in

Acquisition of ground penetrating radar data to detect lava tubes: preliminary results on the Komoriana cave at Fuji volcano in Japan

  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Ground penetrating radar (GPR) has been successfully used to detect a lava tube in a basaltic lava flow from the Fuji volcano, Japan. The target lava tube, Komoriana cave, is in the northern part of the Aokigahara lava flow which was emplaced over 1,000 years ago. The lava tube was detected by simply dragging the GPR antenna along a prefecture road, demonstrating the advantages of this method compared with detailed mapping and geological investigations. As a massive basaltic lava flow allows deep penetration of the radar pulse, the reflection radar profile obtained showed two very clear structures which were interpreted from the waveforms to be the roof and the bottom of the lava tube from the waveforms alone. This was subsequently confirmed by careful survey measurements of the Komoriana cave lava tube. The feasibility study clearly demonstrated that GPR is a very effective and convenient tool for discovering unknown lava tubes hidden deeply inside lava flows.

Résumé

Le radar géologique a été utilisé avec succès pour détecter un tube de lave dans une coulée basaltique issue du volcan Fuji au Japon. Le tube de lave recherché, connu sous le nom de grotte Komoriana, se situe dans la partie nord de la coulée Aokigahara qui s'est mise en place il y a 1.000 ans. Le tube de lave fut détecté en déplaçant simplement l'antenne le long d'une route, démontrant ainsi les avantages de cette méthode par comparaison avec des investigations et cartographies géologiques détaillées. Une coulée basaltique massive permettant une profonde pénétration des impulsions radar, le profil de réflexion radar obtenu a montré deux structures claires qui furent interprétées à partir de la forme des ondes radar comme étant le toit et la base du tube de lave. Ceci fut ensuite confirmé par des mesures précises dans la grotte Komoriana. L'étude de faisabilité a démontré clairement que le radar géologique est un outil efficace et pratique pour la détection de tubes de lave inconnus présents en profondeur dans les coulées de basalte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1. A
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. A
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Atkinson A, Atkinson V (1995) Undara Volcano and its lava tubes. Vernon and Anne Atkinson, Brisbane, 85 pp

  • Atkinson A, Griffin TJ, Stephenson PJ (1975) A major lava tube system from Undara Volcano, north Queensland. Bull Volcanol 39:266–293

    Google Scholar 

  • Beres L, Haeni H (1991) Application of ground-penetrating radar methods in hydrogeologic studies. Groundwater 29:375–386

    Google Scholar 

  • Budetta G, Negro CD (1995) Magnetic field changes on lava flow to detect lava tubes. J Volcanol Geotherm Res 65:237–248

    Article  CAS  Google Scholar 

  • Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:263–280

    CAS  Google Scholar 

  • Carr MH (1981) The surface of Mars. Yale University Press, New Haven, Connecticut, 232 pp

  • Clarke KC, Cross GM (1989) Radar imaging of glaciovolcanic stratigraphy, Mount Wrangell caldera, Alaska: interpretation, model, and results. J Geophys Res 94:7237–7249

    Google Scholar 

  • Conyers LB, Goodman D (1997) Ground penetrating radar: an introduction for archaeologists. Altamira Press, California, 232 pp

    Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetration radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Google Scholar 

  • Flynn LP, Harris AJL, Wright R (2001) Improved identification of volcanic features using Landsat 7 ETM+. Remote Sensing Environ 78:180–193

    Article  Google Scholar 

  • Fullagar PK, Livleybrooks D (1994) Trial of tunnel radar for cavity and ore detection in the Sudbury mining camp, Ontario. In: Proc 5th Int Conf on Ground Penetrating Radar, Waterloo Center for Groundwater Research, Waterloo, Canada, pp 883–894

  • Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Pap 1350:1569–1588

    Google Scholar 

  • Guest JE, Wood C, Greeley R (1984) Lava tubes, terraces and megatumuli on the 1614–24 pahoehoe lava flow field, Mount Etna, Sicily. Bull Volcanol 47:635–648

    Google Scholar 

  • Head JW, Crumpler LS, Abule JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97:13,153–13,197

    Google Scholar 

  • Holcomb RT (1987) Eruptive history and long-term behavior of Kilauea Volcano. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Pap 1350:261–350

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Jol HM, Smith DG (1992) Ground penetrating radar of northern lacustrine deltas. Can J Earth Sci 28:1939–1947

    Google Scholar 

  • Keszthelyi L (1995) A preliminary thermal budget for lava tubes on the Earth and planets. J Geophys Res 100:20,411–20,420

    Google Scholar 

  • Koyama M (1998) Reevaluation of the eruptive history of Fuji volcano, Japan, mainly based on historical documents (in Japanese with English abstract). Kazan 43:323–347

    Google Scholar 

  • Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8:306–308

    Google Scholar 

  • Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana flow field, Kilauea Volcano, Hawaii. Bull Volcanol 55:407–413

    Google Scholar 

  • Miyaji N (1988) History of younger Fuji volcano (in Japanese with English abstract). J Geol Soc Jpn 94:433–452

    Google Scholar 

  • Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23:283–292

    Article  Google Scholar 

  • Miyamoto H, Sasaki S (1998) Numerical simulations of flood basalt lava flows: roles of parameters on lava flow morphologies. J Geophys Res 103:27,489–27,502

    Google Scholar 

  • Miyamoto H, Sasaki S (2000) Two different supply styles of crater outflow materials on Venus inferred from numerical simulations over DEMs. ICARUS 145:533–545

    Article  Google Scholar 

  • Miyamoto H, Itoh K, Kogure J, Tosaka H, Tokunaga T, Fukui K, Mogi K (2001) Experimental studies on non-Newtonian fluid flows as analogues of lava flows: toward a numerical model with a cooling crust. Theor Appl Mech 50:351–356

    Google Scholar 

  • Miyamoto H, Haruyama J, Yamaji A, Saito J, Rokugawa S (2003) A detailed lunar surface research for the future lunar utilization (in Japanese). In: Proc SELENE-B Symp, ISAS (in press)

  • Noon DA, Stickley GF, Longstaff D (1988) A frequency-independent characterisation of GPR penetration and resolution performance. J Appl Geophys 40:127–137

    Article  Google Scholar 

  • Oberbeck VR, Quaide WL, Greeley R (1969) On the origin of lunar sinuous rilles. Mod Geol 1:75–80

    Google Scholar 

  • Olson CG, Dolittle JA (1985) Geophysical techniques for reconnaissance investigation of soils and surficial deposits in mountainous terrain. Soil Sci Soc Am J 49:1490–1498

    Google Scholar 

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343–360

    Article  Google Scholar 

  • Russell JK, Stasiuk MV (1997) Characterization of volcanic deposits with ground-penetrating radar. Bull Volcanol 58:515–527

    Article  Google Scholar 

  • Sakimoto SEH, Zuber MT (1998) Flow and convective cooling in lava tubes. J Geophys Res 103:27,465–27,487

    Google Scholar 

  • Self S, Thordarson T, Keszthelyi L, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys Res Lett 23:2689–2692

    Google Scholar 

  • Smith DG, Jol HM (1992) Ground-penetrating radar investigation of a Lake Bonneville delta, Provo level, Brigham City, Utah. Geology 20:1083–1086

    Article  Google Scholar 

  • Tsuya H (1968) In: Geology of Mt. Fuji. Geological Survey of Japan, 24 pp

  • Walker GPL (1991) Structure, and origin by injection of lava under surface crust of tumuli, 'lava rises', 'lava-rise pits', and 'lava-inflation clefts' in Hawaii. Bull Volcanol 53:546–558

    Google Scholar 

  • Waters AC, Donnelly-Nolan JM, Rogers BW (1990) Selected caves and lava-tube systems in and near Lava Beds National Monument, California. US Geol Surv Bull 1673:102

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ashiwadamura-village Board of Education and the Bat-Cave Conservancy for their support of this work. They are also grateful to Alexis Palmero for his informal review and helpful comments.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Haruyama, J., Rokugawa, S. et al. Acquisition of ground penetrating radar data to detect lava tubes: preliminary results on the Komoriana cave at Fuji volcano in Japan. Bull Eng Geol Environ 62, 281–288 (2003). https://doi.org/10.1007/s10064-002-0182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-002-0182-1

Keywords

Mots clés

Navigation