Skip to main content

Advertisement

Log in

Root hair-specific EXPANSIN B genes have been selected for graminaceae root hairs

  • Published:
Molecules and Cells

Abstract

Cell differentiation ultimately relies on the regulation of cell type-specific genes. For a root hair cell to undergo morphogenesis, diverse cellular processes including cell-wall loosening must occur in a root hair cell-specific manner. Previously, we identified and characterized root hairspecific cis-elements (RHE) from the genes encoding the cell wall-loosening protein EXPANSIN A (EXPA) which functions preferentially on dicot cell walls. This study reports two root hair-specific grass EXPB genes that contain RHEs. These genes are thought to encode proteins that function more efficiently on grass cell walls. The proximal promoter regions of two orthologous EXPB genes from rice (Oryza sativa; OsEXPB5) and barley (Hordeum vulgare; HvEXPB1) included RHE motifs. These promoters could direct root hair-specific expression of green fluorescent protein (GFP) in the roots of rice and Arabidopsis (Arabidopsis thaliana). Promoter deletion analyses demonstrated that the RHE motifs are necessary for root hairspecific expression of these EXPB promoters. Phylogenetic analysis of EXP protein sequences indicated that grass EXPBs are the only orthologs to these root hair-specific EXPBs, separating dicot EXPBs to distal branches of the tree. These results suggest that RHE-containing root hair-specific EXPB genes have evolved for grass-specific cell wall modification during root hair morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baluška, F., Salaj, J., Mathur, J., Braun, M., Jasper, F., Šamaj, J., Chua, N.-H., Barlow, P.W., and Volkmann, D. (2000). Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev. Biol. 227, 618–632.

    Article  PubMed  Google Scholar 

  • Baumberger, N., Ringli, C., and Keller, B. (2001). The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes Dev. 15, 1128–1139.

    Article  CAS  PubMed  Google Scholar 

  • Baumberger, N., Steiner, M., Ryser, U., Keller, B., and Ringli, C. (2003). Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J. 35, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Bechtold, N., and Pelletier, G. (1998). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In Arabidopsis Protocols, J.M. Martinez-Zapater and J. Salinas, eds. (Totowa, USA: Humana), pp. 259–266.

    Chapter  Google Scholar 

  • Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992). New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20, 1195–1197.

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt, C., and Tierney, M.L. (2000). Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol. 122, 705–714.

    Article  CAS  PubMed  Google Scholar 

  • Bibikova, T.N., Jacob, T., Dahse, I., and Gilroy, S. (1998). Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125, 2925–2934.

    CAS  PubMed  Google Scholar 

  • Carpita, N.C., and Gibeaut, D.M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.-T. (2007). A cis-element for root hair specificity has been co-opted repeatedly through the divergence of upstream fatedetermining machineries. Plant Signal. Behav. 2, 117–118.

    PubMed  Google Scholar 

  • Cho, H.-T., and Cosgrove, D.J. (2002). Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14, 3237–3253.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H.-T., and Kende, H. (1997). Expansins in deepwater rice internodes. Plant Physiol. 113, 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.-B., Wang, C., Muench, D.G., Ozawa, K., Franceschi, V.R., Wu, Y., and Okita, T. (2000). Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407, 765–767.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D., Cho, H.-T., and Lee, Y. (2006). Expansins: expanding importance in plant growth and development. Physiol. Plant. 126, 511–518.

    CAS  Google Scholar 

  • Clowes, F.A.L. (2000). Pattern in root meristem development in angiosperms. New Phytol. 146, 83–94.

    Article  Google Scholar 

  • Cosgrove, D.J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 391–417.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J. (2000). Loosening of plant cell walls by expansins. Nature 407: 321–326.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D.J., Li, L. C., Cho, H.-T., Hoffmann-Benning, S., Moore, R.C., and Blecker, D. (2002). The growing world of expansins. Plant Cell Physiol. 43, 1436–1444.

    Article  CAS  PubMed  Google Scholar 

  • Galway, M.E. (2006). Root hair cell walls: filling in the framework. Can. J. Bot. 84, 613–621.

    Article  CAS  Google Scholar 

  • Grierson, C., and Schiefelbein, J. (2000). Root hairs. In The ArabidopsisBook, C.R. Somerville and E.M. Meyerowitz, eds. (Rockville, USA: American Society of Plant Biologists) (doi: 10.1199/tab.0060, www.aspb.org/publications/arabidopsis).

    Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient trans-formation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, J.S, Lee, S., and An, G. (2008). Intragenic control of expression of a rice MADS box gene OsMADS1. Mol. Cells 26, 474–480.

    CAS  PubMed  Google Scholar 

  • Kim, D.W., Lee, S.H., Choi, S.-B., Won, S.K., Heo, Y.K., Cho, M., Park, Y.I., and Cho, H.-T. (2006). Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18, 2958–2970.

    Article  CAS  PubMed  Google Scholar 

  • Kwasniewski, M., and Szarejko, I. (2006). Molecular cloning and characterization of β-expansin gene related to root hair formation in barley. Plant Physiol. 141, 1149–1158.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.-C., Durachko, D.M., and Cosgrove, D.J. (1993). An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta 191, 349–56.

    Article  CAS  Google Scholar 

  • Li, L.C., Bedinger, P.A., Volk, C., Jones, A.D., and Cosgrove, D.J. (2003). Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol. 132, 2073–2085.

    Article  CAS  PubMed  Google Scholar 

  • Masucci, J.D., and Schiefelbein, J.W. (1996). Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8, 1505–1517.

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M., and Cosgrove, D.J. (1992). Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  • Sampedro, J., and Cosgrove, D.J. (2005). The expansin superfamily. Genome Biol. 6, 242.

    Article  PubMed  Google Scholar 

  • Schiefelbein, J., and Lee, M.M. (2006). A novel regulatory circuit specifies cell fate in the Arabidopsis root epidermis. Physiol. Plant. 126, 503–510.

    CAS  Google Scholar 

  • Schiefelbein, J., Kwak, S.-H., Wieckowski, Y., Barron, C., and Bruex, A. (2009). The gene regulatory network for root epidermal celltype pattern in Arabidopsis. J. Exp. Bot. 60, 1515–1521.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Won, S.-K., Lee, Y.-J., Lee, H.-Y., Heo, Y.-K., Cho, M., and Cho, H.-T. (2009). Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiol. 150, 1459–1473.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Taeg Cho.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Won, SK., Choi, SB., Kumari, S. et al. Root hair-specific EXPANSIN B genes have been selected for graminaceae root hairs. Mol Cells 30, 369–376 (2010). https://doi.org/10.1007/s10059-010-0127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0127-7

Keywords

Navigation