Advertisement

Virtual Reality

, Volume 22, Issue 2, pp 119–135 | Cite as

EEG-based BCI and video games: a progress report

  • Bojan Kerous
  • Filip Skola
  • Fotis Liarokapis
S.I. : VR and AR Serious Games

Abstract

This paper presents a systematic review of electroencephalography (EEG)-based brain–computer interfaces (BCIs) used in the video games, a vibrant field of research that touches upon all relevant questions concerning the future directions of BCI. The paper examines the progress of BCI research with regard to games and shows that gaming applications offer numerous advantages by orienting BCI to concerns and expectations of a gaming application. Different BCI paradigms are investigated, and future directions are discussed.

Keywords

Brain–computer interface Games EEG 

References

  1. Ahn M, Cho H et al (2013) High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PloS ONE 8(11):e80886CrossRefGoogle Scholar
  2. Ahn M, Jun SC (2015) Performance variation in motor imagery brain-computer interface: a brief review. J Neurosci Methods 243:103–110CrossRefGoogle Scholar
  3. Ahn M, Lee M et al (2014) A review of brain-computer interface games and an opinion survey from researchers, developers and users. Sensors 14(8):14601–14633CrossRefGoogle Scholar
  4. Ali A, Puthusserypady S (2015) A 3D learning playground for potential attention training in ADHD: a brain computer interface approach. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 67–70Google Scholar
  5. Allison BZ et al (2010) Toward a hybrid brain-computer interface based on imagined movement and visual attention. J Neural Eng 7(2):026007CrossRefGoogle Scholar
  6. Allison B et al (2010) BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 18(2):107–116CrossRefGoogle Scholar
  7. Amaral CP, Simões MA, Castelo-Branco MS (2015) Neural signals evoked by stimuli of increasing social scene complexity are detectable at the single-trial level and right lateralized. PloS ONE 10(3):e0121970CrossRefGoogle Scholar
  8. Ang KK et al (2015) A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci 46(4):310–320CrossRefGoogle Scholar
  9. Angeloni C et al (2012) P300-based brain–computer interface memory game to improve motivation and performance. In: 2012 38th annual northeast bioengineering conference (NEBEC). IEEE, pp 35–36Google Scholar
  10. Bai O et al (2007) A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. J Neural Eng 5(1):24CrossRefGoogle Scholar
  11. Banville H, Falk TH (2016) Recent advances and open challenges in hybrid brain-computer interfacing: a technological review of non-invasive human research. Brain Comput Interfaces 3(1):9–46CrossRefGoogle Scholar
  12. Bayliss JD, Ballard DH (2000) Single trial P3 epoch recognition in a virtual environment. Neurocomputing 32:637–642CrossRefGoogle Scholar
  13. Berger TW et al (2008) Brain-computer interfaces: an international assessment of research and development trends. Springer, BerlinCrossRefGoogle Scholar
  14. Bernays R et al (2012) Lost in the dark: emotion adaption. In: Adjunct proceedings of the 25th annual ACM symposium on User interface software and technology. ACM, pp 79–80Google Scholar
  15. Berta R et al (2013) Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans Comput Intell AI Games 5(2):164–175CrossRefGoogle Scholar
  16. Beveridge R, Wilson S, Coyle D (2016) 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming. Progr Brain Res 228:329–353CrossRefGoogle Scholar
  17. Bianchi L et al (2010) Which physiological components are more suitable for visual erp based brain-computer interface? A preliminary MED/EEG study. Brain Topogr 23(2):180–185CrossRefGoogle Scholar
  18. Bin G et al (2009) VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier]. IEEE Comput Intell Mag 4(4):22–26CrossRefGoogle Scholar
  19. Blankertz B, Sannelli C et al (2010) Neurophysiological predictor of SMR-based BCI performance. Neuroimage 51(4):1303–1309CrossRefGoogle Scholar
  20. Blankertz B, Sanelli C et al (2009) Predicting BCI performance to study BCI illiteracy. BMC Neuroscience 10(Suppl 1):P84. doi: 10.1186/1471-2202-10-S1-P84 CrossRefGoogle Scholar
  21. Bonnet L, Lotte F, Lécuyer A (2013) Two brains, one game: design and evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans Comput Intell AI Games 5(2):185–198CrossRefGoogle Scholar
  22. Bordoloi S, Sharmah U, Hazarika SM (2012) Motor imagery based BCI for a maze game. In: 2012 4th international conference on intelligent human computer interaction (IHCI). IEEE, pp 1–6Google Scholar
  23. Bos DP-O et al (2010) Brain-computer interfacing and games. In: Bos DP-O, Boris R (eds) Brain-computer interfaces. Springer, London, pp 149–178Google Scholar
  24. Carofiglio V, Abbattista F (2013) A rough BCI-based assessment of user’s emotions for interface adaptation: Application to a 3D-virtual-environment exploration task. In: Ai* Hci@ Ai* IaGoogle Scholar
  25. Causse M et al (2015) EEG/ERP as a measure of mental workload in a simple piloting task. Proc Manuf 3:5230–5236Google Scholar
  26. Cernea D et al (2013) Emotion scents: a method of representing user emotions on gui widgets. In: IS&T/SPIE electronic imaging. International Society for Optics and Photonics, pp 86540F–86540FGoogle Scholar
  27. Chouhan T et al (2015) A comparative study on the effect of audio and visual stimuli for enhancing attention and memory in brain computer interface system. In: 2015 IEEE International Conference on systems, man, and cybernetics (SMC). IEEE, pp 3104–3109Google Scholar
  28. Chumerin N et al (2013) Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Transa Comput Intell AI Games 5(2):100–110CrossRefGoogle Scholar
  29. Cohen A et al (2016) Multi-modal virtual scenario enhances neurofeedback learning. Front Robot AI 3:52CrossRefGoogle Scholar
  30. Collinger JL et al (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564CrossRefGoogle Scholar
  31. Congedo M et al (2011) “ Brain invaders”: a prototype of an open-source P300-based video game working with the OpenVIBE platform. In: 5th international brain–computer interface conference 2011 (BCI 2011), pp 280–283Google Scholar
  32. Coulton P, Wylie CG, Bamford W (2011) Brain interaction for mobile games. In: Proceedings of the 15th international academic MindTrek conference: envisioning future media environments. ACM, pp 37–44Google Scholar
  33. Coyle D, Garcia J et al (2011) EEG-based continuous control of a game using a 3 channel motor imagery BCI: BCI game. In: 2011 IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB). IEEE, pp 1–7Google Scholar
  34. Coyle D, Stow J et al (2015) Action games, motor imagery, and control strategies: toward a multi-button controller. In: Nakatsu R, Rauterberg M, Ciancarini P (eds) Handbook of digital games and entertainment technologies, Springer, SingaporeGoogle Scholar
  35. Daly JJ, Cheng R et al (2009) Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33(4):203–211CrossRefGoogle Scholar
  36. Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043CrossRefGoogle Scholar
  37. de Lissa P et al (2015) Measuring the face-sensitive N170 with a gaming EEG system: a validation study. J Neurosci Methods 253:47–54CrossRefGoogle Scholar
  38. De Vos M, Gandras K, Debener S (2014) Towards a truly mobile auditory brain-computer interface: exploring the P300 to take away. Int J Psychophysiol 91(1):46–53CrossRefGoogle Scholar
  39. Edlinger G, Güger C (2011) Social environments, mixed communication and goal-oriented control application using a brain–computer interface. In: Edlinger G, Güger C (eds) Universal access in human–computer interaction. Users diversity, pp 545–554Google Scholar
  40. Enriquez-Geppert S, Huster RJ, Herrmann CS (2017) EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci 11:1–51CrossRefGoogle Scholar
  41. Ewing KC, Fairclough SH, Gilleade K (2016) Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Front Hum Neurosci 10:223. doi: 10.3389/fnhum.2016.00223 CrossRefGoogle Scholar
  42. Falkenstein M et al (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51(2):87–107CrossRefGoogle Scholar
  43. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523CrossRefGoogle Scholar
  44. Ferreira ALS, Marciano JN et al (2014) Understanding and proposing a design rationale of digital games based on brain-computer interface: Results of the admiralmind battleship study. SBC J Interact Syst 5(1):3–15Google Scholar
  45. Ferreira ALS, de Miranda LC (2013) A survey of interactive systems based on brain-computer interfaces. SBC J Interact Syst 4(1):3–13Google Scholar
  46. Finke A, Lenhardt A, Ritter H (2009) The MindGame: a P300-based brain-computer interface game. Neural Netw 22(9):1329–1333CrossRefGoogle Scholar
  47. Fouad MM et al (2015) Brain computer interface: a review. In: Fouad MM, Amin KM, El-Bendary N, Hassanien AE (eds) Brain-computer interfaces. Springer, Berlin, pp 3–30Google Scholar
  48. Frey J et al (2013) Review of the use of electroencephalography as an evaluation method for human–computer interaction. arXiv preprint arXiv:1311.2222
  49. Friedrich EVC et al (2014) Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front Neuroeng 7:21CrossRefGoogle Scholar
  50. Ganin IP, Shishkin SL, Kaplan AY (2011) A P300 BCI with stimuli presented on moving objects. naGoogle Scholar
  51. Gilroy SW et al (2013) A brain–computer interface to a plan-based narrative. In: IJCAI, pp 633–2Google Scholar
  52. Guger C et al (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147CrossRefGoogle Scholar
  53. Guger C, Daban S et al (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1):94–98CrossRefGoogle Scholar
  54. Guger C, Allison B, Müller-Putz G (2015) Recent advances in brain-computer interface research–a summary of the BCI Award 2014 and BCI research trends. Brain-computer interface research. Springer, Berlin, pp 127–133CrossRefGoogle Scholar
  55. Guo F et al (2008) A brain-computer interface using motion-onset visual evoked potential. J Neural Eng 5(4):477CrossRefGoogle Scholar
  56. Gürkök H, van de Laar B et al (2014) Players’ opinions on control and playability of a BCI game. International conference on universal access in human-computer interaction. Springer, Berlin, pp 549–560Google Scholar
  57. Gürkök H, Nijholt A, Poel M (2012) Brain-computer interface games: towards a framework. Entertainment computing-ICEC 2012:373–380Google Scholar
  58. Gurkok H, Nijholt A (2013) Affective brain–computer interfaces for arts. In: 2013 humaine association conference on affective computing and intelligent interaction (ACII). IEEE, pp 827–831Google Scholar
  59. Hakvoort G et al (2011) Measuring immersion and affect in a brain-computer interface game. Human-computer interaction-INTERACT 2011:115–128Google Scholar
  60. Hasan BAS, Gan JQ (2012) Hangman BCI: An unsupervised adaptive self-paced brain-computer interface for playing games. Comput Biol Med 42(5):598–606CrossRefGoogle Scholar
  61. Heidrich R de O et al (2015) Development of BCI based softwares to assist people with mobility limitations in the school inclusion process. In: Proceedings of the 17th international ACM SIGACCESS conference on computers & accessibility. ACM, pp 397–398Google Scholar
  62. Huster RJ et al (2014) Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions. Int J Psychophysiol 91(1):36–45CrossRefGoogle Scholar
  63. Hwang H-J et al (2013) EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput Interact 29(12):814–826CrossRefGoogle Scholar
  64. i Badia SB et al (2011) Exploring the synergies of a hybrid BCI-VR neurorehabilitation system. In: 2011 international conference on virtual rehabilitation (ICVR). IEEE, pp 1–8Google Scholar
  65. J Del R Millán (2008) Non-invasive brain-machine interaction. Int J Pattern Recognit Artif Intell 22(05):959–972CrossRefGoogle Scholar
  66. Järvelä S et al (2015) Stimulus games. In: Lankoski P, Björk S (eds) Game research methods. ETC Press, Pittsburgh, pp 193–205. ISBN 978-1-312-88473-1. http://dl.acm.org/citation.cfm?id=2812774.2812790
  67. Jasper H (1958) Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375CrossRefGoogle Scholar
  68. Jeunet C, Jahanpour E, Lotte F (2016) Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study. J Neural Eng 13(3):036024CrossRefGoogle Scholar
  69. Jin J et al (2014) An optimized ERP brain-computer interface based on facial expression changes. J Neural Eng 11(3):036004CrossRefGoogle Scholar
  70. Joselli M et al (2014) MindNinja: concept, development and evaluation of a mind action game based on EEGs. In: 2014 Brazilian symposium on computer games and digital entertainment (SBGAMES). IEEE, pp 123–132Google Scholar
  71. Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage 34(4):1600–1611CrossRefGoogle Scholar
  72. Kapeller C, Hintermüller C, Guger C (2012) Augmented control of an avatar using an SSVEP based BCI. In: Proceedings of the 3rd augmented human international conference. ACM, p 27Google Scholar
  73. Kaplan AY et al (2013) Adapting the P300-based brain-computer interface for gaming: a review. IEEE Trans Comput Intell AI Games 5(2):141–149CrossRefGoogle Scholar
  74. Kaufmann T et al (2011) Flashing characters with famous faces improves ERP-based brain-computer interface performance. J Neural Eng 8(5):056016CrossRefGoogle Scholar
  75. Kerous B, Liarokapis F (2016) Brain–computer interfaces—a survey on interactive virtual environments. In: 2016 8th international conference on games and virtual worlds for serious applications (VS-games). IEEE, pp 1–4Google Scholar
  76. Khong A et al (2014) BCI based multi-player 3-D game control using EEG for enhancing attention and memory. In: 2014 IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 1847–1852Google Scholar
  77. Kleber B, Birbaumer N (2005) Direct brain communication: neuroelectric and metabolic approaches at Tübingen. Cogn Process 6(1):65–74CrossRefGoogle Scholar
  78. Ko M et al (2009) A study on new gameplay based on brain–computer interface. In: Proceedings of DiGRAGoogle Scholar
  79. Koo B et al (2015) Immersive BCI with SSVEP in VR head-mounted display. In: 2015 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 1103–1106Google Scholar
  80. Kos’ Myna N, Tarpin-Bernard F (2013) Evaluation and comparison of a multimodal combination of BCI paradigms and eye tracking with affordable consumer-grade hardware in a gaming context. IEEE Trans Comput Intell AI Games 5(2):150–154CrossRefGoogle Scholar
  81. Kotsia I, Zafeiriou, S, Fotopoulos S (2013) Affective gaming: A comprehensive survey. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 663–670Google Scholar
  82. Kreilinger A et al (2011) Switching between manual control and brain–computer interface using long term and short term quality measures. Front Neurosci 5:147. doi: 10.3389/fnins.2011.00147 Google Scholar
  83. Krepki R et al (2007) The berlin brain-computer interface (BBCI)-towards a new communication channel for online control in gaming applications. Multimed Tools Appl 33(1):73–90CrossRefGoogle Scholar
  84. Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80(1):83–89CrossRefGoogle Scholar
  85. Kübler A et al (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10):1775–1777CrossRefGoogle Scholar
  86. Lécuyer A et al (2008) Brain-computer interfaces, virtual reality, and videogames. Computer 41(10):66–72CrossRefGoogle Scholar
  87. Leeb R, Lancelle M et al (2013) Thinking penguin: Multimodal brain-computer interface control of a VR game. IEEE Trans Comput Intell AI Games 5(2):117–128CrossRefGoogle Scholar
  88. Leeb R, Friedman D, et al (2007) Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput Intell Neurosci 2007:79642. doi: 10.1155/2007/79642 CrossRefGoogle Scholar
  89. Legény J, Viciana-Abad R, Lécuyer A (2013) Toward contextual SSVEP-based BCI controller: smart activation of stimuli and control weighting. IEEE Trans Comput Intell AI Games 5(2):111–116CrossRefGoogle Scholar
  90. Li J et al (2013) A competitive brain computer interface: Multi-person car racing system. In: 2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 2200–2203Google Scholar
  91. Liao L-D et al (2012) Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J Neuroeng Rehabil 9(1):5CrossRefGoogle Scholar
  92. Liarokapis F, Vourvopoulos A, Ene A (2015) Examining user experiences through a multimodal BCI puzzle game. In: 2015 19th international conference on information visualisation (iV). IEEE, pp 488–493Google Scholar
  93. Lim WL, Sourina O, Wang L (2015) Mind-an EEG neurofeedback multitasking game. In: 2015 International conference on cyberworlds (CW). IEEE, pp 169–172Google Scholar
  94. Liu Y, Sourina O, Hou X (2014) Neurofeedback games to improve cognitive abilities. In: 2014 international conference on cyberworlds (CW). IEEE, pp 161–168Google Scholar
  95. Lopetegui E, Zapirain BG, Mendez A (2011) Tennis computer game with brain control using EEG signals. In: 2011 16th international conference on computer games (CGAMES). IEEE, pp 228–234Google Scholar
  96. Lotte F (2011) Brain–computer interfaces for 3D games: hype or hope? In: Proceedings of the 6th international conference on foundations of digital games. ACM, pp 325–327Google Scholar
  97. Lotte F et al (2012) Combining BCI with virtual reality: towards new applications and improved BCI. In: Lotte F, Faller J, Guger C, Renard Y, Pfurtscheller G, Lécuyer A, Leeb R (eds) Towards practical brain-computer interfaces. Springer, Berlin, pp 197–220CrossRefGoogle Scholar
  98. Loup-Escande E et al (2017) User-centered BCI videogame design. In: Emilie L-E, Lotte F, Loup G, Lécuyer A (eds) Handbook of digital games and entertainment technologies, pp 225–250Google Scholar
  99. Luck SJ (2004) Ten simple rules for designing and interpreting ERP experiments. In: Handy, TC (ed) Event-related potentials: a methods handbook, A Bradford book, MIT Press, Google Scholar
  100. Luck SJ (2014) An introduction to the event-related potential technique. MIT Press, Boca RatonGoogle Scholar
  101. Maby E et al (2012) BCI could make old two-player games even more fun: a proof of concept with connect four. Adv Hum Comput Interact 2012:1CrossRefGoogle Scholar
  102. Marshall D, Coyle D et al (2013) Games, gameplay, and BCI: the state of the art. IEEE Trans Comput Intell AI Games 5(2):82–99CrossRefGoogle Scholar
  103. Marshall D, Beveridge R et al (2015) Interacting with multiple game genres using motion onset visual evoked potentials. In: Computer games: AI, animation, mobile, multimedia, educational and serious games (CGAMES), 2015. IEEE, pp 18–27Google Scholar
  104. Marshall D, Wilson S, Coyle D (2015) Motion-onset visual evoked potentials for gaming. In: Proceedings of the international conference on computer games, multimedia & allied technology (CGAT). Global Science and Technology Forum, p 155Google Scholar
  105. Martinez P, Bakardjian H, Cichocki A (2007) Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Computat Intell Neurosci 2007:13–13Google Scholar
  106. Mayer K, Wyckoff SN, Strehl U (2013) One size fits all? slow cortical potentials neurofeedback: a review. J Atten Disord 17(5):393–409CrossRefGoogle Scholar
  107. McCreadie KA, Coyle DH, Prasad G (2012) Sensorimotor-rhythm modulation feedback with 3D vector-base amplitude panning—a brain–computer interface pilot study. In: IET Irish Signals and Systems Conference (ISSC 2012), 28–29 June 2012, Maynooth, IrelandGoogle Scholar
  108. McMahan T, Parberry I, Parsons TD (2015a) Evaluating player task engagement and arousal using electroencephalography. Proc Manuf 3:2303–2310Google Scholar
  109. McMahan T, Parberry I, Parsons TD (2015b) Modality specific assessment of video game player’s experience using the Emotiv. Entertain Comput 7:1–6CrossRefGoogle Scholar
  110. Mercier-Ganady J et al (2013) Can we use a brain–computer interface and manipulate a mouse at the same time? In: Proceedings of the 19th ACM symposium on virtual reality software and technology. ACM, pp 69–72Google Scholar
  111. Mondéjar T et al (2016) Correlation between videogame mechanics and executive functions through EEG analysis. J Biomed Inform 63:131–140CrossRefGoogle Scholar
  112. Moore Jackson M et al (2009) Continuous control paradigms for direct brain interfaces. Human–computer interaction. Novel interaction methods and techniques, pp 588–595Google Scholar
  113. Mühl C, Allison B et al (2014) A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain Comput Interfaces 1(2):66–84CrossRefGoogle Scholar
  114. Mühl C, Gürkök H et al (2010) Bacteria hunt: a multimodal, multiparadigm BCI game. In: Mühl C, Gürkök H, Bos DP-O, Thurlings ME, Scherffig L, Duvinage M, Elbakyan AA, Kang SW, Poel M, Heylen D Workshop report for the enterface workshop in Genova, Italy 2009Google Scholar
  115. Mulholland T (1995) Human EEG, behavioral stillness and biofeedback. Int J Psychophysiol 19(3):263–279CrossRefGoogle Scholar
  116. Müller-Putz G, Scherer R, Pfurtscheller G (2007) Game-like training to learn single switch operated neuroprosthetic control. In: Proceedings of BRAINPLAY 2007, playing with your brainGoogle Scholar
  117. Muñoz JE, Chavarriaga R, Lopez DS (2014) Application of hybrid BCI and exergames for balance rehabilitation after stroke. In: Proceedings of the 11th conference on advances in computer entertainment technology. ACM, p 67Google Scholar
  118. Muñoz JE, Lopez DS et al (2015) Design and creation of a BCI videogame to train sustained attention in children with adhd. In: 2015 10th computing Colombian conference (10CCC). IEEE, pp 194–199Google Scholar
  119. Nacke LE (2015) Games user research and physiological game evaluation. In: Nacke LE (eds) Game user experience evaluation. Springer, Berlin, pp 63–86CrossRefGoogle Scholar
  120. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279CrossRefGoogle Scholar
  121. Nijboer F et al (2013) The asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics 6(3):541–578CrossRefGoogle Scholar
  122. Oude Bos D, Reuderink B (2008) Brainbasher: a BCI game. Eindhoven University of Technology, Eindhoven, NetherlandsGoogle Scholar
  123. Palke A (2004) Master thesis: Brainathlon: enhancing brainwave control through brain-controlled game play. PhD thesis, Mills CollegeGoogle Scholar
  124. Parafita R et al (2013) A spacecraft game controlled with a brain–computer interface using SSVEP with phase tagging. In: 2013 IEEE 2nd international conference on serious games and applications for health (SeGAH). IEEE, pp 1–6Google Scholar
  125. Parenthoen M, Murie F, Thery F (2015) The sea is your mirror. In: Proceedings of the 8th ACM SIGGRAPH conference on motion in games. ACM, pp 159–165Google Scholar
  126. Park K et al (2016) Narratives and sensor driven cognitive behavior training game platform. In: 2016 IEEE 14th international conference on software engineering research, management and applications (SERA). IEEE, pp 125–131Google Scholar
  127. Picton T (1990) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. J Clin Neurophysiol 7(3):450–451CrossRefGoogle Scholar
  128. Pike M et al (2016) \(\#\) scanners: exploring the control of adaptive films using brain–computer interaction. In: Proceedings of the 2016 CHI conference on human factors in computing systems. ACM, pp 5385–5396Google Scholar
  129. Pineda JA et al (2003) Learning to control brain rhythms: making a brain-computer interface possible. IEEE Trans Neural Syst Rehabil Eng 11(2):181–184CrossRefGoogle Scholar
  130. Pires G et al (2011) Playing tetris with non-invasive BCI. In: 2011 IEEE 1st international conference on serious games and applications for health (SeGAH). IEEE, pp 1–6Google Scholar
  131. Po-Lei L, Hao-Teng S, Hsiang-Chih C (2014) Design a brain computer interface gaming system using steady-state visual evoked potential. In: 2014 IEEE international conference on consumer electronics-Taiwan (ICCE-TW). IEEE, pp 5–6Google Scholar
  132. Ramadan RA et al (2015) Basics of brain computer interface. In: Ramadan RA, Refat S, Elshahed MA, Ali RA (eds) Brain-computer interfaces. Springer, Berlin, pp 31–50Google Scholar
  133. Riechmann H, Finke A, Ritter H (2016) Using a cVEP-based brain-computer interface to control a virtual agent. IEEE Trans Neural Syst Rehabil Eng 24(6):692–699CrossRefGoogle Scholar
  134. Rohani DA, Puthusserypady S (2015) BCI inside a virtual reality classroom: a potential training tool for attention. EPJ Nonlinear Biomed Phys 3(1):12CrossRefGoogle Scholar
  135. Ryan RM, Deci EL (2000) Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol 55(1):68CrossRefGoogle Scholar
  136. Scherer R, Friedrich EC et al (2011) Non-invasive brain-computer interfaces: Enhanced gaming and robotic control. International work-conference on artificial neural networks. Springer, Berlin, pp 362–369Google Scholar
  137. Scherer R, Schloegl A et al (2007) The self-paced Graz brain–computer interface: methods and applications. In: Scherer R, Schloegl A, Lee F, Bischof H, Janša J, Pfurtscheller G (eds) Computational intelligence and neuroscienceGoogle Scholar
  138. Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph lateral Scler 11(5):449–455CrossRefGoogle Scholar
  139. Shenjie S, Thomas KP, Vinod A et al (2014) Two player EEG-based neurofeedback ball game for attention enhancement. In: 2014 IEEE international conference on systems, man and cybernetics (SMC). IEEE, pp 3150–3155Google Scholar
  140. Shim B-S, Lee S-W, Shin J-H (2007) Implementation of a 3-dimensional game for developing balanced brainwave. In: 5th ACIS international conference on software engineering research, management & applications, 2007. SERA 2007. IEEE, pp 751–758Google Scholar
  141. Sivanathan A et al (2014) Temporal multimodal data synchronisation for the analysis of a game driving task using EEG. Entertain Comput 5(4):323–334CrossRefGoogle Scholar
  142. Spüler M, Niethammer C (2015) Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity. Front Hum Neurosci 9:155Google Scholar
  143. Strehl U et al (2006) Self-regulation of slow cortical potentials: a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118(5):e1530–e1540CrossRefGoogle Scholar
  144. Su L, Wenyan M, Qiqian H. The mind garden: a brain computer interface game. https://wiki.cc.gatech.edu/designcomp/images/2/24/MindGardenFinalReport.pdf
  145. Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832CrossRefGoogle Scholar
  146. Teo G et al (2015) Comparison of measures used to assess the workload of monitoring an unmanned system in a simulation mission. Proc Manuf 3:1006–1013Google Scholar
  147. Thomas KP, Vinod A, Guan C (2013) Design of an online EEG based neurofeedback game for enhancing attention and memory. In: 2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 433–436Google Scholar
  148. Vachiratamporn V, Legaspi R, Numao M (2013) Towards the design and development of anticipation-based event selection modeling for survival horror games. In: Vachiratamporn V, Legaspi R, Numao M (eds) Theory and practice of computation. Springer, Berlin, pp 184–194CrossRefGoogle Scholar
  149. van de Laar B et al (2013) Experiencing BCI control in a popular computer game. IEEE Trans Computat Intell AI Games 5(2):176–184CrossRefGoogle Scholar
  150. van Erp JB, Brouwer A-M (2014) Touch-based brain computer interfaces: state of the art. In: 2014 IEEE haptics symposium (HAPTICS). IEEE, pp 397–401Google Scholar
  151. van Vliet M et al (2012) Designing a brain–computer interface controlled video-game using consumer grade EEG hardware. In: Biosignals and biorobotics conference (BRC), 2012 ISSNIP. IEEE, pp 1–6Google Scholar
  152. Velliste M et al (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101CrossRefGoogle Scholar
  153. Vidal JJ (1977) Real-time detection of brain events in EEG. Proc IEEE 65(5):633–641CrossRefGoogle Scholar
  154. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23(2):194–198CrossRefGoogle Scholar
  155. Vourvopoulos A et al (2016a) Usability and cost-effectiveness in brain–computer interaction: Is it user throughput or technology related? In: Proceedings of the 7th augmented human international conference 2016. ACM, p 19Google Scholar
  156. Vourvopoulos A, i Badia SB (2016) Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J Neuroeng Rehabil 13(1):69CrossRefGoogle Scholar
  157. Vourvopoulos A, Ferreira A, Badia SBi (2016b) NeuRow: an immersive VR environment for motor-imagery training with the use of brain–computer interfaces and vibrotactile feedback. In: Proceedings of the 3rd international conference on physiological computing systems, Lisbon, PortugalGoogle Scholar
  158. Wang C et al (2007) Introduction to NeuroComm: A platform for developing real-time EEG-based brain–computer interface applications. In: 29th annual international conference of the IEEE Engineering in Medicine and Biology Society, 2007 (EMBS 2007). IEEE, pp 4703–4706Google Scholar
  159. Wang Q, Sourina O, Nguyen MK (2010) Eeg-based “ serious” games design for medical applications. In: 2010 international conference on cyberworlds (cw). IEEE, pp 270–276Google Scholar
  160. Washburn DA (2003) The games psychologists play (and the data they provide). Behav Res Methods 35(2):185–193CrossRefGoogle Scholar
  161. Wei P (2010) An virtual vehicle control game for online brain computer interface feedback training. In: 2010 international conference on mechatronics and automation (ICMA). IEEE, pp 1942–1944Google Scholar
  162. Wolpaw JR et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791CrossRefGoogle Scholar
  163. Wong CM et al (2015) A multi-channel SSVEP-based BCI for computer games with analogue control. In: 2015 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications. IEEE, pp 1–6Google Scholar
  164. Wu G, Xie Z, Wang X (2014) Development of a mind-controlled android racing game using a brain computer interface (BCI). In: 2014 4th IEEE international conference on information science and technology (ICIST). IEEE, pp 652–655Google Scholar
  165. Yan S et al (2016) Enhancing audience engagement in performing arts through an adaptive virtual environment with a brain–computer interface. In: Proceedings of the 21st international conference on intelligent user interfaces. ACM, pp 306–316Google Scholar
  166. Yoh M-S, Kwon J, Kim S (2010) Neurowander: a BCI game in the form of interactive fairy tale. In: Proceedings of the 12th ACM international conference adjunct papers on ubiquitous computing-adjunct. ACM, pp 389–390Google Scholar
  167. Yoon H et al (2013) Emotion recognition of serious game players using a simple brain computer interface. In: 2013 international conference on ICT convergence (ICTC). IEEE, pp 783–786Google Scholar
  168. Zander TO, Kothe C et al (2010) Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Zander TO, Kothe C, Jatzev S, Gaertner M (eds) Brain-computer interfaces. Springer, Berlin, pp 181–199CrossRefGoogle Scholar
  169. Zander TO, Kothe C (2011) Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general. J Neural Eng 8(2):025005CrossRefGoogle Scholar
  170. Zhao Q, Zhang L, Cichocki A (2009) EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chin Sci Bull 54(1):78–87CrossRefGoogle Scholar
  171. Zhu D et al (2010) A survey of stimulation methods used in SSVEP-based BCIs. Comput Intell Neurosci 2010:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.HCI LabMasaryk UniversityBrnoCzech Republic

Personalised recommendations